Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T04:40:09.242Z Has data issue: false hasContentIssue false

Low Temperature Annealing of Inkjet-Printed Silicon Thin-Films for Photovoltaic and Thermoelectric Devices

Published online by Cambridge University Press:  11 July 2013

Etienne Drahi
Affiliation:
Centre Microélectronique de Provence, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne cedex, France
Anshul Gupta
Affiliation:
Centre Microélectronique de Provence, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne cedex, France
Sylvain Blayac
Affiliation:
Centre Microélectronique de Provence, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne cedex, France
Sébastien Saunier
Affiliation:
Science des Matériaux et des Structure, Ecole Nationale Supérieure des Mines de Saint Etienne, 42023 Saint-Etienne cedex 2, France
Laurent Lombez
Affiliation:
Institut de Recherche et Développement sur l’Energie Photovoltaïque (IRDEP), UMR 7174, EDF-CNRS-Chimie Paristech, 6 quai Watier, 78401 Chatou, France
Marie Jubault
Affiliation:
Institut de Recherche et Développement sur l’Energie Photovoltaïque (IRDEP), UMR 7174, EDF-CNRS-Chimie Paristech, 6 quai Watier, 78401 Chatou, France
Gilles Renou
Affiliation:
Institut de Recherche et Développement sur l’Energie Photovoltaïque (IRDEP), UMR 7174, EDF-CNRS-Chimie Paristech, 6 quai Watier, 78401 Chatou, France
Patrick Benaben
Affiliation:
Centre Microélectronique de Provence, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne cedex, France
Get access

Abstract

Silicon nanoparticles-based inks were investigated in respect of their suitability for photovoltaic and thermoelectric applications. Nanoparticles with a diameter ranging between 20 to 150 nm were functionalized in order to avoid oxidation as well as having a good stability in suspension. After inkjet-printing and drying, they were annealed up to 1000 °C under nitrogen atmosphere by both rapid thermal and microwave annealing. The influence of the annealing treatment on the structural, electrical, optical and thermal properties was investigated by Raman, SEM, electrical and optical measurements. SEM and Raman demonstrate evolution of the microstructure at temperature as low as 600 °C. Optical, electrical and thermal properties depend strongly on the annealing temperature and tend to exhibit a modification of physical properties above 800 °C when the smallest nanoparticles begin to melt. The annealing method has been identified to be of primary importance on the layer microstructure and its thermal behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shimoda, T., et al. ., Nature 440, 783786 (2006).CrossRefGoogle Scholar
Masuda, T., Sotani, N., Hamada, H., Matsuki, Y., Shimoda, T., Appl. Phys. Lett. 100, 253908 (2012).10.1063/1.4730614CrossRefGoogle Scholar
Drahi, E., Blayac, S., Benaben, P., Mater. Res. Soc. Symp. Proc. 1321 (2011).Google Scholar
Lechner, R.W., PhD. Thesis, Technische Universität München, 2009.Google Scholar
Drahi, E., PhD. Thesis, Ecole Nationale Supérieure des Mines de Saint Etienne, 2013.Google Scholar
Kho, T.C., Black, L.E., McIntosh, K.R., in 24th European PVSEC, Hamburg, Germany, 2009.Google Scholar
Żymełka, D., Saunier, S., Molimard, J., Goeuriot, D., Adv. Eng. Mater. 13, 901905 (2011).10.1002/adem.201000354CrossRefGoogle Scholar
De Wolf, I., Jiménez, J., Landesman, J.-P., Frigeri, C., Braun, P., Da Silva, E., Calvet, E., Raman and Luminescence Spectroscopy for Microelectronics, 1998.Google Scholar
Kawata, M., Katoda, T., J. Appl. Phys. 75, 74567459 (1994).CrossRefGoogle Scholar
Greer, J.R., Street, R.A., J. Appl. Phys. 101, 103529 (2007).10.1063/1.2735404CrossRefGoogle Scholar
Tsu, R., Hernandez, J.G., Appl. Phys. Lett. 41, 10161018 (1982).CrossRefGoogle Scholar
Balkanski, M., Wallis, R. f., Haro, E., Phys. Rev. B 28, 19281934 (1983).CrossRefGoogle Scholar
Nonnenmacher, M., Wickramasinghe, H.K., Appl. Phys. Lett. 61, 168170 (1992).CrossRefGoogle Scholar