Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:57:23.024Z Has data issue: false hasContentIssue false

Low Temperature Transport Properties of Ru2Si3 Single Crystals

Published online by Cambridge University Press:  15 February 2011

U. Gottlieb
Affiliation:
Laboratoire des Matériaux et du Génie Physique, École Nationale Supérieure de Physique de Grenoble, Institut National Polytechnique de Grenoble, Domaine Universitaire, B.P. 46, 38402 St. Martin d'Hères
R. Madar
Affiliation:
Laboratoire des Matériaux et du Génie Physique, École Nationale Supérieure de Physique de Grenoble, Institut National Polytechnique de Grenoble, Domaine Universitaire, B.P. 46, 38402 St. Martin d'Hères
O. Laborde
Affiliation:
Centre de Recherches sur les Très Basses Températures, Laboratoire associé à l'Université J. Fourrier and Laboratoire des Champs Magnétiques Intenses, CNRS, BP 166, 38042 Grenoble Cedex 9, France
Get access

Abstract

We present here low temperature transport properties of Ru2Si3 single crystals. Below room temperature the resistivity behaviour of this material is extrinsic. The Hall coefficient is positive down to about 10 K and the becomes negative below. We explain this crossover with a two band model. At very low T, the magnetoresistance of our crystals shows the typical behaviour for a doped semiconductor on the metallic side of the metal-insulator transition and can be described by a scaling law characteristic for weak localisation with strong electronelectron interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Birkholz, U. and Schelm, J., Phys. Stat. Sol. 27, 413 (1968)Google Scholar
[21 see for example: Hirano, T., and Kaise, M., J. Appl. Phys. 68, 627 (1990)Google Scholar
[3] Vinning, C. B., and Allevato, C. E., in Proc. 10th Int. Conf. on Thermoelectrics, Cardiff, Wales, UK, 10–12 Sept. 1991, Ed. Rowe, D. M. (Babrow, Cardiff, 1991) p. 167 Google Scholar
[4] Pearson, W. B., Acta Cryst. B 26, 1044 (1970)Google Scholar
[5] Nowotny, H., in: The Chemistry of Extended Defects in Non-Metallic Solids, Eds. Eyring, L. R. and O'Keefe, M. (North-Holland, Amsterdam, 1970) p. 223 Google Scholar
[6] Susz, C. P., Muller, J., Yvon, K., and Parthe, E., J. Less-Comon Met. 71,1 (1980)Google Scholar
[7] Chang, Y. S., and Chu, J. J., Mater. Lett. 5,67, (1987)Google Scholar
[8] Poutcharovsky, D. J., Yvon, K., and Parthe, E., J. Less-Common Met. 40, 139 (1975)Google Scholar
[9] Gottlieb, U., Laborde, O., Rouault, A., and Madar, R., Appl. Surf. Sci. 73, 243 (1993)Google Scholar
[10] Nava, F., Tu, K. N., Thomas, O., Senateur, J. P., Madar, R., Borghesi, A., Guizzetti, G., Gottlieb, U., Laborde, O., and Bisi, O., Mat. Sci. Rep. 9, 141 (1993)Google Scholar
[11] Thomas, O., Senateur, J. P., Madar, R., Laborde, O., and Rosencher, E., Solid State Comm. 55, 629 (1985)Google Scholar
[12] Thomas, O., Thesis, Institut National Polytechnique de Grenoble, France, 1986 Google Scholar
[13] Gottlieb, U., Thesis, Institut National Polytechnique de Grenoble, France, 1994 Google Scholar
[14] Shklovskii, B. I., and Efros, A. L., Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)Google Scholar
[15] Rosenberg, H. M., Low Temperature Solid State Physics (Clarendon, Oxford, 1965) p. 224 Google Scholar
[16] Mott, N. F., Metal-Insulator Transitions, Taylor and Francis, London, 1974 Google Scholar
[17] Löhneysen, H. v., and Welsch, M., Phys. Rev. B 44, 9045 (1991)Google Scholar
[18] Lee, P. A., and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985)Google Scholar
[19] Lee, P. A., and Ramakrishnan, T. V., Phys. Rev. B 26, 4009 (1982)Google Scholar