Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T19:37:10.519Z Has data issue: false hasContentIssue false

Luminescence efficiency of InGaN/GaN quantum wells on bulk GaN substrate

Published online by Cambridge University Press:  01 February 2011

Matthias Dworzak
Affiliation:
dworzak@physik.tu-berlin.de
Thomas Stempel
Affiliation:
thomas.stempel@iwanuschka.de
Axel Hoffmann
Affiliation:
hoffmann@physik.tu-berlin.de
Gijs Franssen
Affiliation:
gijs@unipress.waw.pl
Tadeusz Suski
Affiliation:
tadek@unipress.waw.pl
R. Czernecki
Affiliation:
Institute of High Pressures ‘Unipress’, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
M. Leszczynski
Affiliation:
Institute of High Pressures ‘Unipress’, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
I. Grzegory
Affiliation:
Institute of High Pressures ‘Unipress’, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
Get access

Abstract

Time-integrated and time-resolved photoluminescence measurements on InGaN quantum wells grown by MOCVD on two different substrates (sapphire and GaN) show that the lumi-nescence efficiency in these structures strongly depends on the intensity of carrier excitation. While at low excitation densities the recombination of excited carriers is governed by local-ization effects the behavior drastically changes at higher densities. At room temperature a suppression of nonradiative recombination could be observed that leads to an super linear increase of the luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Nakamura, S., Fasol, G., The Blue Laser Diode (Springer, Berlin 1997).CrossRefGoogle Scholar
2. O'Donnel, K.P., Martin, R.W., Middleton, P.G., Phys. Rev. Lett. 82, 237 (1999).CrossRefGoogle Scholar
3. Grzegory, I., Boćkowski, M., Krukowski, S., Łucznik, B., Wróblewski, M., Weyher, J. L., Leszczynski, M., Prystawko, P., Czernecki, R., Lehnert, J., Nowak, G., Perlin, P., Teisseyre, H., Purgal, W., Krupczynski, W., Suski, T., Dmowski, L., Litwin-Staszewska, E., Skierbiszewski, C., Łepkowski, S., and Porowski, S., Acta Phys. Pol. A 100, 229 (2001).CrossRefGoogle Scholar
4. Franssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Trzeciakowski, W., Makarowa, I., Prystawko, P., Leszciynski, M., Grzegory, I., Porowski, S., Kokenyesi, S., Appl. Phys. Lett. 87, 041109 (2005).CrossRefGoogle Scholar
5. Christen, J., Bimberg, D., Phys. Rev. B 42, 7213 (1990).CrossRefGoogle Scholar
6. Zimmermann, R., Runge, E., Phys. Stat. Sol. (a) 164, 511 (1997).3.0.CO;2-C>CrossRef3.0.CO;2-C>Google Scholar
7. Bell, A., Christen, J., Bertram, F., Ponce, F., Marui, H., and Tanaka, S., Appl. Phys. Lett 84, 58 (2004).CrossRefGoogle Scholar
8. Gurioli, M., Vinattieri, A., Colocci, M., Deparis, C., Massies, J., Neu, G., Bosacchi, A., Franchi, S., Phys. Rev. B 44, 3115 (1991)CrossRefGoogle Scholar