Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:04:51.093Z Has data issue: false hasContentIssue false

Magnetic Phase Transition in the Csci Fesi Spacer in Fe/FeSi Multilayers

Published online by Cambridge University Press:  15 February 2011

J. Dekoster
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
A. Vantomme
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
S. Degroote
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
R. Moons
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
Get access

Abstract

We report the formation of the CsCI FeSi phase in Fe/FeSi multilayers with constant Fe thickness and varying FeSi layer thickness. The crystallographic and magnetic properties of this metastable FeSi phase are determined in thick (62 nm) epitaxial silicide layers with ion channeling, X-ray diffraction and Mossbauer spectroscopy measurements which clearly show that the CsCl phase becomes increasingly magnetic upon cooling down to 4.2 K. These results indicate that the transition from antiferromagnetic to ferromagnetic coupling observed at low temperatures in such multilayers is controlled by a magnetic phase transition in the FeSi spacer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grunberg, P., Schreiber, R., Pang, Y., Brodsky, M.B. and Sowers, S.H., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
2 Wang, Y., Levy, P.M. and Fry, J.L., Phys. Rev. Lett. 65, 2732 (1990). P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992). R. Coehoorn, Phys. Rev. B 44, 9331 (1991).Google Scholar
3 Mattson, J. E., Kumar, Sudha, Fullerton, Eric E., Lee, S.R., Sowers, C.H., Grimsditch, M. and Bader, S.D., Phys. Rev. Lett. 71, 185 (1993).Google Scholar
4 Toscano, S., Briner, B., Hopster, H. and Landolt, M., J. Magn. Magn. Materials L 6, 114 (1992).Google Scholar
5 Fullerton, Eric E., Mattson, J.E., Lee, S.R., Sowers, C.H., Huang, Y.Y., Felcher, G., Bader, S.D. and Parker, F.T., J. Appl. Phys. 73, 6335 (1993).Google Scholar
6 Inomata, K., Yusu, K. and Saito, Y., Phys. Rev. Lett. 74, 1863 (1995).Google Scholar
7 Degroote, S., Vantomme, A., Dekoster, J. and Langouche, G., to be published in Appl. Surf Sc.Google Scholar
8 Kanel, H. Von, Mendik, M., Mader, K.A., Onda, N., Concalves-Conto, S., Schwarz, C., Malegori, G., Miglio, L. and Marbelli, F., Phys. Rev. B 50, 3570 (1994).Google Scholar
9 Appleton, B.R. and Foti, G., Ion Beam Handbook for Materials Analysis (Academic Press, New York, 1977).Google Scholar
10 Degroote, S., Dekoster, J., Vantomme, A. and Langouche, G., unpublished.Google Scholar
11 Degroote, S., Langelaar, M.H., Kobayashi, T., Dekoster, J., Wachter, J. De, Moons, R., Niesen, L and Langouche, G., Materials Research Society Symposium Proceedings 320, 133 (1994).Google Scholar