Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T18:31:12.525Z Has data issue: false hasContentIssue false

Magnetic Resonance Probes Of Band Tail States And Defects In Tetrahedrally Coordinated Amorphous Semiconductors

Published online by Cambridge University Press:  01 February 2011

P. C. Taylor*
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

Recent electron spin resonance (ESR) results relating to (1) recombination processes for optically excited electrons and holes in tetrahedrally coordinated amorphous semiconductors and (2) kinetics of metastable defects (dangling bonds associated with the Staebler-Wronski effect) in hydrogenated amorphous silicon (a-Si:H). With regard to recombination processes, ESR measurements have been performed over a wide range of excitation intensities (nW/cm2 to W/cm2) on hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous germanium (a-Ge:H). The kinetics can be studied down to carrier densities as low as 1014 cm-3. The longtime decay curves show that at large carrier separation (1) the random distribution of optically excited electrons and holes is subject to the condition of charge neutrality, and (2) the decays are universal and independent of the densities of localized, band-tail states. With regard to the metastable defects in a-Si:H, the kinetics of the production and thermal annealing of silicon dangling bonds have been measured at temperatures between 25 and 480 K using ESR. Below about 150 K the measurement of the dangling bonds is masked by long-lived, band tail carriers that accumulate with time. The production rate for silicon dangling bonds decreases with decreasing temperature and is nearly temperature independent below approximately 100 K. Defects created by 10 hours of irradiation below 100 K anneal almost completely at 300 K. In a- Ge:H, the first measurements of optically induced, metastable germanium dangling bonds have been made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shklovskii, B. I. et al., in Transport, Correlation and Structural Defects, Fritzsche, H., ed. (World Scientific, Singapore, 1990), p. 161.Google Scholar
2. Levin, E. I., Marianer, S., and Shklovskii, B. I., Phys. Rev. B45, 5906(1992).10.1103/PhysRevB.45.5906Google Scholar
3. Street, R. A., Adv. Phys. 30, 593(1981).10.1080/00018738100101417Google Scholar
4. Dunstan, D. J. and Boulitrop, F., Phys. Rev. B 30, 5945(1984).10.1103/PhysRevB.30.5945Google Scholar
5. Searle, T. M., Phil. Mag. Lett. 61, 251(1990).Google Scholar
6. Hoheisel, M., Carius, R., and Fuhs, W., J. Non-Cryst. Solids 63, 313(1984).Google Scholar
7. Vomas, H. and Fritzsche, H., J. Non-Cryst. Solids 97&98, 823(1987).Google Scholar
8. Stradins, P. and Fritzsche, H., Phil. Mag. B69, 121(1994).Google Scholar
9. Whitaker, J. and Taylor, P. C., MRS Symp. Proc.(this volume).Google Scholar
10. Boulitrop, F. and Dunstan, D. J., Solid State Commun. 44, 841(1982).Google Scholar
11. Schumm, G., Jackson, W. B., and Street, R. A., Phys. Rev. B48, 14198(1993).Google Scholar
12. Street, R. A., Biegelsen, D. K., and Weisfield, R. L., Phys. Rev. B 30, 5861(1984).Google Scholar
13. Brodsky, M. H. and Title, R. S., Phys. Rev. Lett. 23, 581(1969).Google Scholar
14. Yan, B., Schultz, N., Efros, A. L., and Taylor, P. C., Phys. Rev. Lett. 84, 4180(2000).Google Scholar
15. Yan, B. and Taylor, P. C., MRS Symp. Proc. 507, 787(1998).Google Scholar
16. Schultz, N. and Taylor, P. C., MRS Symp. Proc. 557, 353(1999).10.1557/PROC-557-353Google Scholar
17. Shklovskii, B. I., Fritzsche, H., and Baranovskii, S. D., Phys. Rev. Lett. 62, 2989(1989).10.1103/PhysRevLett.62.2989Google Scholar
18. Marques, F. C., de Lima, M. M. Jr, and Taylor, P. C., J. Non-Cryst. Solids 266-269, 717(2000).10.1016/S0022-3093(99)00788-7Google Scholar
19. Marques, F. C., Lima, M. M. de Jr, and Taylor, P. C., Appl. Phys. Lett. 74, 25(1999).Google Scholar
20. Schultz, N. A., Scharber, M. C., Brabec, C. J., and Sariciftci, N. S., Phys. Rev. B 64, 245210(2001).Google Scholar
21. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292(1977).Google Scholar
22. Dersch, H., Stuke, J. and Beichler, J., Appl. Phys. Lett. 38, 456(1980).10.1063/1.92402Google Scholar
23. Zou, X., Chan, Y. C., Webb, D. B., Lam, Y. W., Hu, Y. F., Beling, C. D., Fung, S., and Weng, H. M., Phys. Rev. Lett. 84, 769(2000).10.1103/PhysRevLett.84.769Google Scholar
24. Biegelsen, D. K and Stutzmann, M., Phys. Rev. B 33, 3006(1986).Google Scholar
25. Carius, R. and Fuhs, W., AIP Conf. Proc. 120, 125(1984).10.1063/1.34729Google Scholar
26. Persans, P., Phil. Mag. B46, 435(1982).Google Scholar
27. Tran, M. Q., Stradins, P., and Fritzsche, H., MRS Symp. Proc. 336, 431(1994).10.1557/PROC-336-431Google Scholar
28. Fritzsche, H., Heck, S., and Stradins, P., J. Non-Cryst. Solids 198-200, 153(1996).10.1016/0022-3093(95)00668-0Google Scholar
29. Boulitrop, F., AIP Conf. Proc. 120, 178(1984).Google Scholar
30. Stradins, P. and Fritzsche, H., J. Non-Cryst. Solids 198-200, 432(1996).10.1016/0022-3093(95)00716-4Google Scholar
31. Yoshida, M., Taylor, P.C., MRS Symp. Proc. 258, 347(1992).Google Scholar
32. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23(1984).Google Scholar
33. Branz, H., Solid State Commun. 105, 387 (1998). Phys. Rev. B 59, 5498 (1999).10.1016/S0038-1098(97)10142-9Google Scholar
34. Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371(1998).Google Scholar
35. Van de Walle, C. G. and Tuttle, B., MRS Symp. Proc. MRS Symp. Proc. 557, 275(1999).10.1557/PROC-557-275Google Scholar
36. Zhang, S. B. and Branz, H. M., Phys. Rev. Lett. 87, 105503(2001).Google Scholar