Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T04:08:16.252Z Has data issue: false hasContentIssue false

Measurement of Stress-strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation

Published online by Cambridge University Press:  26 February 2011

Zhiqiang Cao
Affiliation:
zcao@bu.edu, Boston University, Dept. of Manufacturing Engineering, 15 Saint Mary's Street, Brookline, MA, 02446, United States
Xin Zhang
Affiliation:
xinz@bu.edu, Boston University, Dept. of Manufacturing Engineering, 15 Saint Mary's Street, Brookline, MA, 02446, United States
Get access

Abstract

In this paper, we explore the use of nanoindentation techniques as a method of measuring equivalent stress-strain curves of the PECVD SiOx thin films. Three indenter tips with different geometries were adopted in our experiments, enabling us to probe different regimes of plastic deformation in the PECVD SiOx thin films. A shear transformation zone (STZ) based amorphous plasticity theory is applied to depict the underlying plastic deformation mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madou, M., Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Boca Raton, 2002).Google Scholar
2. Epstein, A. H. and Senturia, S.D., Science 276, 1211 (1997).Google Scholar
3. Cao, Z. and Zhang, X., J. Appl. Phys. 96, 4273 (2004) and the references therein.Google Scholar
4. Freund, L. B. and Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, New York, 2004).Google Scholar
5. Oliver, W. C. and Pharr, G.M., J. Mater. Res. 19, 3 (2004) and the references therein.Google Scholar
6. Bhattacharya, A. K. and Nix, W D, Int. J. Solids Structures 24, 1287 (1988).10.1016/0020-7683(88)90091-1Google Scholar
7. Bower, A. F., Fleck, N.A., Needleman, A. and Ogbonna, N., Proc. R. Soc. Lond. A 441, 97 (1993).Google Scholar
8. Li, H. and Ngan, A.H.W., J. Mater. Res. 19, 513 (2004).Google Scholar
9. Tabor, D., The Hardness of Metals, Clarendon Press, Oxford, 1951.Google Scholar
10. Johnson, K. L., J. Mech. Phys. Solids 18, 115 (1970).Google Scholar
11. Hill, R., Proc. R. Soc. Lond. A 436 617 (1992).Google Scholar
12. Poisl, W. H., Oliver, W.C. and Fabes, B.D., J. Mater. Res. 10, 2024 (1995).Google Scholar
13. Storåkers, B. and Larsson, P.L., J. Mech. Phys. Solids 42, 307 (1994).Google Scholar
14. Spaepen, F., Acta Metall. 25, 407 (1977).10.1016/0001-6160(77)90232-2Google Scholar
15. Argon, A. S., Acta Metall, 27, 47 (1979).Google Scholar
16. Falk, M. L. and Langer, J.S., Phys. Rev. E 57, 7192 (1998).Google Scholar
17. Langer, J. S., Phys. Rev. E 64, 011504 (2001).Google Scholar
18. Martínez, E., Romero, J., Lousa, A. and Esteve, J., Appl. Phys. A 77, 419 (2003).Google Scholar
19. Courtney, T. H., Mechanical Behavior of Materials, 2nd ed., McGraw Hill Press, Boston, 2000.Google Scholar
20. Drucker, D. C., Proc. 1st US Natl. Congress Appl. Mech (Chicago, 1951), p.487, A.S.M.E. Press, New York, 1952.Google Scholar
21. Schuh, C. A. and Nieh, T.G., J. Mater. Res. 19, 46 (2004) and the references therein.Google Scholar