Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:03:09.971Z Has data issue: false hasContentIssue false

Mechanisms and Kinetics of Misfit Dislocation Formation in Heteroepitaxial Thin Films

Published online by Cambridge University Press:  16 February 2011

W. D. Nix
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA 94305
D. B. Noble
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA 94305
J. F. Turlo
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA 94305
Get access

Abstract

The mechanisms and kinetics of forming misfit dislocations in heteroepitaxial films are studied. The critical thickness for misfit dislocation formation can be found by considering the incremental extension of a misfit dislocation by the movement of a “threading” dislocation segment that extends from the film/substrate interface to the free surface of the film. This same mechanism allows one to examine the kinetics of dislocation motion and to illuminate the importance of dislocation nucleation and multiplication in strain relaxation. The effects of unstrained epitaxial capping layers on these processes are also considered. The major effects of such capping layers are to inhibit dislocation nucleation and multiplication. The effect of the capping layer on the velocity of the “threading” dislocation is shown to be small by comparison.

A new substrate curvature technique for measuring the strain and studying the kinetics of strain relaxation in heteroepitaxial films is also briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, M.P., Laderman, S.S., Kamins, T.I., Rosner, S.J., Nauka, K., Noble, D.B., Hoyt, J.L., King, C.A.. Gronet, C.M. and Gibbons, J.F., Mater. Res. Soc. Sy mp. Proc., 130, 179184 (1989).Google Scholar
2. Hull, R., Bean, J.C. and Buescher, C., J. Appl. Phys., 66, 58375843 (1989).Google Scholar
3. Patton, G. L, Comfort, J.H., Meyerson, B.S., Grabbe, E.F., Scilla, G.J., Fresart, E. De, Stork, J.M.C., Sun, J.Y.-C., Harame, D.L. and Burghartz, J.M., IEEE Electron Device Lttr 11, 171173 (1990).Google Scholar
4. Kamins, T.I., Nauka, K., Kruger, J.B., Hoyt, J.L., King, C.A., Noble, D.B., Gronet, C.M. and Gibbons, J.F., IEEE Electron Device Letters, 10, 503505 (1989).Google Scholar
5. Stirland, D.J., Appl. Phys. Letters, 53, 24322437 (1988).Google Scholar
6. Merwe, J.H. Van der, J. Appl. Phys., 34, 123127 (1963).Google Scholar
7. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth, 27, 118125 (1974).Google Scholar
8. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth, 22, 273280 (1975).Google Scholar
9. Matthews, J.W., J. Vac. Sci. Technology, 12, 126133 (1975).Google Scholar
10. Nix, W.D., Metall. Trans. A, 20A, 22172245 (1989).Google Scholar
11. Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K., J. Vac. Sci. Technology A, 2, 436440 (1984).Google Scholar
12. Freund, L.B., J. Appl. Mech., 54, 553557 (1987).Google Scholar
13. Freund, L.B., Bower, A. and Ramirez, J.C., Mater. Res. Soc. Symp. Proc., 130, 139152 (1989).Google Scholar
14. Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett., 51, 13251327 (1987).Google Scholar
15. Tsao, J.Y., Dodson, B.W., Picraux, S.T. and Cornelison, D.M., Phys. Rev. Letters., 59, 24552460 (1987).Google Scholar
16. Reppich, B., Hassen, P. and Ilschner, B., Acta Metall., 12, 12831288 (1964)Google Scholar
17. Alexander, H. and Hassen, P., Solid State Physics, 22, 27158 (1968).Google Scholar
18. Hull, R., Bean, J.C., Werder, D.J. and Leibenguth, R.E., Appl. Phys. Lett., 52, 16051607 (1988).Google Scholar
19. Tuppen, C.G. and Gibbings, C.J., to be published.Google Scholar
20. Hagen, W. and Strunk, H., Appl, phys.,.17,8587 (1978).Google Scholar
21. Doerner, M.F. and Nix, W.D., J. Materials Res., 1, 601609 (1986).Google Scholar
22. Vreeland, T. Jr., Dommann, A., Tsai, C.-J. and Nicolet, M.-A., Mater. Res. Soc. Symp, Proc., 130, 312 (1989).Google Scholar
23. Flinn, P.A., Gardner, D.S. and Nix, W.D., IEEE Trans. on Electron Devices, ED–34, 689699 (1987).Google Scholar
24. Flinn, P.A., Mater. Res. Soc. Symrp. Proc., 130, 4152 (1989).Google Scholar