Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:00:43.105Z Has data issue: false hasContentIssue false

Metal Chloride-Graphite Compounds as Cathode and Anode Materials For Batteries

Published online by Cambridge University Press:  15 February 2011

Serge Flandrois
Affiliation:
Centre de Recherche Paul Pascal, Université de Bourdeaux, 33405 Talence, France
Francis Baron
Affiliation:
Centre de Recherche Paul Pascal, Université de Bourdeaux, 33405 Talence, France
Get access

Abstract

Graphite intercalation compounds can be used as electrode materials in batteries owing to the high electronic conductivity of carbon layers and the easy diffusion of ions between the layers. Moreover intercalation has the beneficial effect of impeding some parasitic reactions detrimental to good electrode reversibility. After a brief review of recent proposals, emphasis is given to transition metal chlorides. It is shown that, besides the nickel chloride-graphite compound proposed two years ago as a cathode material for alkaline batteries, other metal chlorides intercalated into graphite are excellent cathode or anode materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braver, K. and Moyes, K.R., U.S. Patent 3 514 537 (May 1970);Google Scholar
1a Watanabe, N. and Fukuda, M., U.S. Patent 3 536 532 (Oct 1970);Google Scholar
1b Morita, A., Iijima, T., Fujii, T. and Ogava, H., J. Power Sources 5, 111 (1980).Google Scholar
2. Brown, B.K., Trans. Am. Electrochem. Soc. 53, 113 (1928);Google Scholar
2a Brown, B.K. and Storey, O.W., Trans. An. Electrochem. Soc. 53, 129 (1928);Google Scholar
2b Jedlicka, H., Z. Naturforsch. 2a, 534 (1947).Google Scholar
3. Hunger, H.F. and Heymach, G.J., J. Electrochem. Soc. 120, 1161 (1973);Google Scholar
3a Touzain, P., Yazami, R. and Jobert, A., Communication to the French-Japanese meeting, Pont-à-Mousson, Dec. 1980 and to be published.Google Scholar
4. Armand, M. and Touzain, P., Mater. Sci. Eng. 31, 319 (1977);Google Scholar
4a Jobert, A., Touzain, P. and Bonnetain, L., Carbon 19, 193 (1981).Google Scholar
5. Maximovitch, S., Bronoel, G., Nghia, N.T. and Sarrazin, J., Power Sources 6, 751 (1977).Google Scholar
6. Lalancette, J.M. and Roussel, R., Can. J. Chem. 54, 3541 (1976).Google Scholar
7. Endo, M., Koyama, T. and Inagaki, M., Oyo Buturi 49, 563 (1980).Google Scholar
8. Flandrois, S., Masson, J.M. and Rouillon, J.C., Synth. Met. 3, 193 (1981).Google Scholar
8a Flandrois, S., Synth. Met. 4, 255 (1982).Google Scholar
9. Labat, J., Ann. Chimie 9, 399 (1964).Google Scholar
10. Baron, F., Flandrois, S., Hauw, C. and Gaultier, J., Solid State Comm. 42, 759 (1982).Google Scholar
11. Flandrois, S., Masson, J.M., Rouillon, J.C., Gaultier, J. and Hauw, C., Synth. Met. 3, 1 (1981).Google Scholar
12. Kordesch, K., Gsellmann, J. and Tomantschger, K., J. Electroanal. Chem. 118, 187 (1981).CrossRefGoogle Scholar
13. Kozawa, A. in : Batteries vol. 1, Kordesch, K.V. ed. (Marcel Dekker, New York 1974) pp. 385520.Google Scholar
14. Kozawa, A. and Powers, R.A., J. Electrochem. Soc. 115, 122 (1968).Google Scholar
15. Boden, D., Venuto, C.J., Wisler, D. and Wylie, R.B., J. Electrochem. Soc. 115, 333 (1968).Google Scholar
16. Kordesch, K., Gsellman, J., Peri, M., Tomantschger, K. and Chemelli, R., Electrochim. Acta 26, 1495 (1981).Google Scholar
17. Miyazaki, K., Power Sources 3, 607 (1971).Google Scholar
18. Pourbaix, M., Atlas d'Equilibres Electrochimiques, Gauthier-Villars, Paris (1963).Google Scholar