Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:17:07.371Z Has data issue: false hasContentIssue false

Micro-Crystalline Silicon in Image Sensor

Published online by Cambridge University Press:  28 February 2011

B. W. Park
Affiliation:
Advanced Research Lab. 3, GoldStar Central Research Laboratory, 16 Woomyeon-Dong, Seocho-Gu, Seoul, 137–140, Korea.
J. I. Choi
Affiliation:
Advanced Research Lab. 3, GoldStar Central Research Laboratory, 16 Woomyeon-Dong, Seocho-Gu, Seoul, 137–140, Korea.
C. W. Hur
Affiliation:
Advanced Research Lab. 3, GoldStar Central Research Laboratory, 16 Woomyeon-Dong, Seocho-Gu, Seoul, 137–140, Korea.
T. K. Oh
Affiliation:
Advanced Research Lab. 3, GoldStar Central Research Laboratory, 16 Woomyeon-Dong, Seocho-Gu, Seoul, 137–140, Korea.
I. K. Kang
Affiliation:
Advanced Research Lab. 3, GoldStar Central Research Laboratory, 16 Woomyeon-Dong, Seocho-Gu, Seoul, 137–140, Korea.
Get access

Abstract

Amorphous semiconductors play a major role in the field of electronic imaging. The function of an image sensor is to generate an electrical signal corresponding to the light distribution in the optical image. The photodiodes convert light into electrical signal. We investigated the linear image sensor driven by thin film transistor as an switching element, with each photodiode connected to the corresponding thin film transistor. The photo/dark conductivity of photodiode are compared in the case of amorphous silicon and microcrystalline. The influences in contact resistance between microcrystalline n+ layer and the source/drain metal electrode, electron mobility, threshold voltage, and on-off current ratio of thin film transistor with intrinsic microcrystalline silicon channel layer were also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veprek, S. and Maracek, V: Solid State Electron., 11 (1968) 683.Google Scholar
2. Usui, S. and Kikuchi, M.: J. Non-Cryst. Solids, 34 (1979) 1.Google Scholar
3. Matsuda, A., Yamasaki, S., Nakagawa, K., Okushi, H., Tanaka, K., lizima, S., Matsumura, M. and Yamamoto, H.: Jpn. J. Appl. Phys., 19 (1980) L305.Google Scholar
4. Tanaka, K., Nakagawa, K., Matsuda, A., Matsumura, M., Yamamoto, H., Yamasaki, S., Okushi, H. and lizima, S.: Jpn. J. Appl. Phys., 20 (1981) Suppl. 20–1, 267.Google Scholar
5. Matsuda, A., Matsumura, M., Yamasaki, S., Yamamoto, H., Imura, T., Okushi, H., lizima, S. and Tanaka, K.: Jpn. J. Appl. Phys., 20 (1981) L183 :Google Scholar
Matsuda, A., Matsumura, M., Yamamoto, H., Yamasaki, S., Okushi, H., lizima, S. and Tanaka, K.: AIP Conf. Proc. No. 73, ed. Street, R.A.. Biegelsen, D. K. and Knights, J. C. (1981) 192.Google Scholar
6. Hamasaki, T., Kurata, H., Hi rose, M. and Osaka, Y.: Appl. Phys. Lett., 37(1980)1084.Google Scholar
7. Matsuda, A., Yoshida, T., Yamasaki, S. and Tanaka, K.: Jpn. J. Appl. Phys., 20 (1981) L439.Google Scholar
8. Hata, N., Yamasaki, S., Oheda, H., Matsuda, A., Okushi, H. and Tanaka, K.: Jpn. J. Appl. Phys., 20 (1981) L793.Google Scholar
9. Spear, W.E., Willeke, C., LeComber, P. C. and GaFitzgerald, A.: J. de Phys., 42 (1981) Suppl. C4257.Google Scholar
10. Hirose, M.: Jpn. J. Appl. Phys., 21 (1982) Suppl. 21–1, 275.Google Scholar
11. Lustig, N. and Kanicki, J., J. Appl. Phys., 65, (1989) 3951.Google Scholar
12. Kanicki, J., Hansan, E., Griffith, J., MRS. Sym. Proc. Vol. 149. (1989) 239.Google Scholar