Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T04:59:50.726Z Has data issue: false hasContentIssue false

Microstructure and Surface Evolution in the Crystallization of α-Fe2O3/α-Al2O3(0001) Thin Films

Published online by Cambridge University Press:  21 March 2011

Tae Sik Cho
Affiliation:
Department of Materials Science and Engineering, POSTECH, Pohang, 790-784, Korea
Seok Joo Doh
Affiliation:
Department of Materials Science and Engineering, POSTECH, Pohang, 790-784, Korea
Jung Ho Je
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL, 60439, USA Department of Materials Science and Engineering, Sangju National University, Sangju, 742-711, Korea
Get access

Abstract

We found the correlation between microstructure and surface evolution in the crystallization of amorphous α-Fe2O3/α-Al2O3(0001) thin films using real-time synchrotron x-ray scattering and atomic force microscope. The amorphous precursor is crystallized to the epitaxial α-Fe2O3 grains in three steps; i) the growth of the well aligned α-Fe2O3 interfacial islands on α-Al2O3(0001), ii) the growth of the misaligned, homoepitaxial, α-Fe2O3 grains on the well aligned grains ( > 400 °C), and iii) the nucleation of the heteroepitaxial misaligned grains directly on the α-Al2O3substrate ( > 600 °C). The surface roughing is caused by the microstructure evolution during the crystallization of the amorphous precursor films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowburn, R. P., Moulin, A. M., and Welland, M. E., Appl. Phys. Lett. 71, 2202 (1997).Google Scholar
2. Geus, W., Appl. Catal. 25, 313 (1986).Google Scholar
3. Preobrazhensky, V. and Pernod, P., J. Appl. Phys. 81, 5709 (1997).Google Scholar
4. Sarradin, J., Ribes, M., Guessous, A., and Elkacemi, K., Solid State Ionics 112, 35 (1998).Google Scholar
5. Bertacco, R., Merano, M., and Ciccacci, F., Appl. Phys. Lett. 72, 2050 (1998).Google Scholar
6. Toney, Michael F., Phy. Rev. Lett. 79, 4282 (1997).Google Scholar
7. Weiss, W. and Ritter, M., Phy. Rev. B 59, 5201 (1999).Google Scholar
8. Langell, M. and Somorjai, G. A., J. Vac. Sci. Tech. 21, 858 (1982).Google Scholar
9. Corneille, J. S., He, J.-W., and Goodman, D. W., Surf. Sci. 338, 211 (1995).Google Scholar
10. Gomi, M. and Toyoshima, H., Jpn. J. Appl. Phys. 35, L544 (1996).Google Scholar
11. Gao, Y., Kim, Y. J., Chambers, S. A., and Bai, G., J. Vac. Sci. Technol. A 15, 332 (1997).Google Scholar
12. Yi, M. S., Lee, H. H., Kim, D. J., Park, S. J., Noh, D. Y., Kim, C. C., and Je, J. H., Appl. Phys. Lett. 75, 2187 (1999).Google Scholar
13. Doh, S. J., Je, J. H., and Cho, T. S., J. Crystal Growth (submitted).Google Scholar