Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:57:27.410Z Has data issue: false hasContentIssue false

Mixed Metal Phospho-Sulfates for Acid Catalysis

Published online by Cambridge University Press:  10 February 2011

S. G. Thoma
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0710
N. B. Jackson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0710
T. M. Nenoff
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0710
R. S. Maxwell
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

Mixed Metal Phospho-Sulfates were prepared and evaluated for use as acid catalysts via 2-methyl-2-pentene isomerization and o-xylene isomerization. Particular members of this class of materials exhibit greater levels of activity than sulfated zirconia as well as lower rates and magnitudes of deactivation. 31P MAS NMR has been used to examine the role of phosphorous in contributing to the activity and deactivation behavior of these materials, while powder X-ray diffraction, BET surface area, IR, and elemental analysis were used to characterize the bulk catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanabe, K., Solid Acids and Bases. Kodansha, Tokyo, 1970.10.1016/B978-0-12-683250-1.50005-5Google Scholar
2. Hattori, T., Ishiguruo, A., and Murakami, Y., J. Inorg. Nucl. Chem., 40, p. 11071111 (1978).Google Scholar
3. Clearfield, A. and Thakur, D. S., J. Catal., 65, p. 185 (1980).Google Scholar
4. Segawa, K., Nakajima, Y., Nakata, S., Asaoka, S., and Takahashi, H., Journal of Catalysis, 101, p. 8189 (1986).Google Scholar
5. Segawa, K., Nakata, S., and Asaoka, S., Materials Chemistry and Physics, 17, p. 181200 (1987).Google Scholar
6. Segawa, K., Kurushu, Y., Nakajima, Y., and Kinoshita, M., Journal of Catalysis, 94, p. 491500 (1985).Google Scholar
7. Ward, D. A. and Ko, E. I., Journal of Catalysis, 157, p. 321333 (1995).Google Scholar
8. Ward, D. A. and Ko, E. I., Journal of Catalysis, 150, p. 1833 (1994).10.1006/jcat.1994.1319Google Scholar
9. Facasiu, D., Ghenciu, A., and Li, J. Q., Journal of Catalysis, 158, p. 116127 (1996).Google Scholar
10. Ghenciu, A. and Farcasiu, D., Journal of Molecular Catalysis A: Chemical, 109, p. 273283 (1996).Google Scholar
11. Xu, B. Q. and Sachtler, W. M. H., Journal of Catalysis, 167, p. 224233 (1997)Google Scholar
12. Alamo, J., Solid State Ionics, 63–65, p. 547561 (1993).Google Scholar
13. Bunker, B., Mat. Res. Soc. Symp. Proc. 432, p. 2025 (1997).Google Scholar
14. Brow, R. K., Phifer, C. C., Turner, G. L., Kirkpatrick, R. J., SAND90–0710J (1990).Google Scholar
15. Prabhakar, S., Rao, K. J., and Rao, C. N. R., Chemical Physics Letters, 139 (1), p. 96102 (1987).Google Scholar
16. Kramer, G. M., McVicker, G.B., and Ziemiak, J. J., J. Catal., 92, p. 355363 (1985).Google Scholar
17. Kramer, G. M. and McVicker, G. B., Acc. Chem. Res., 19, p. 7884 (1986).Google Scholar
18. Brody, J. F., Johnson, J. W., McVicker, G. B., and Ziemiak, J. J., Solid State Ionics, 32/33, p. 350353 (1989).Google Scholar
19. Jackson, N. B., Nenoff, T. M., Thoma, S. G., and Kohler, S. D., SAND97–2394, 1997 Google Scholar
20. Guisnet, M., Thomazeau, C., Lemberton, J. L., and Mignard, S., Journal of Catalysis, 151, p. 102110 (1995).Google Scholar
21. La Ginestra, A. and Patrono, P., Materials Chemistry and Physics, 17, p. 161179 (1987).Google Scholar