Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:16:00.582Z Has data issue: false hasContentIssue false

Mocvd of Cu on Teflon-AF and Alumina-Modified Teflon-AF

Published online by Cambridge University Press:  15 February 2011

D. Martini
Affiliation:
Department of Chemistry, University of North Texas
R. Sutcliffe
Affiliation:
Department of Chemistry, University of North Texas
J. Kelber
Affiliation:
Department of Chemistry, University of North Texas
Get access

Abstract

XPS studies of Cu(I)hfac(COD)adsorbed on clean and alumina-modified Teflon-AF surfaces show that on the clean polymer surface, Cu(0) formation occurs between 300 K and 600 K in UHV. The corresponding reduction is hindered by the presence of an alumina adlayer. In addition, the Cu Auger kinetic energies indicate the formation of nanoparticles on the alumina surface at both 300 K and 600 K. Annealing from 300 K to 600 K results in a ∼4 eV shift of the Cu(2p) transitions to higher binding energies. These facts indicate that the Cu precursor reacts with the alumina surface and results in limited mobility and hindered Cu(I) to Cu(0) reduction on the modified polymer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sutcliffe, R., Martini, D. and Kelber, J. A., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, Havemann, R., Schmitz, J., Komiyama, H. and Tsubouchi, K. (Materials Research Society, Pittsburgh, PA; 1997) pp.437–54Google Scholar
2. National Technology Roadmap for Semiconductors (Semiconductor Industry Association; San Jose, CA; 1994)Google Scholar
3. Du, Y. and Gardella, J. A. Jr., J. Vac. Science and Technol. A13, 1907 (1995)Google Scholar
4. Dean, A., Langes Handbook of Chemistry, 14th ed.; (McGraw-Hill; New York, 1992) p. 423 Google Scholar
5. Rye, R., J. Polym. Science B 31, 357 (1993)Google Scholar
6. Chang, A., Appl. Phys. Lett. 51, 1236 (1987)Google Scholar
7. Baglin, E. E., Schrott, A. G., Thompson, R. D., Tu, K. N. and Segmuller, A., Nucl. Inst. And Meth. In Physics Research B19/20, 782 (1987)Google Scholar
8. Blanchet, B., Appl. Phys. Lett. 52, 479 (1993)Google Scholar
9. Nuesca, G. and Kelber, J. A., Thin Solid Films 262, 224 (1995)Google Scholar
10. Dubois, H. and Zigarski, B., J. Electrochem. Soc. 139, 3296 (1992)Google Scholar
11. Perry, L., Chi, K. M., Kodas, T., Hampden-Smith, M., and Rye, R. R., Appl. Surface Science 69, 94 (1993)Google Scholar
12. Matienzo, J., Zimmerman, J. A., and Egitto, F. D., J. Vac. Science and Technol. A12, 2662 (1994)Google Scholar
13. Moulder, J., Stickle, W., Sobol, P. and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy, Chastain, J. and King, R. C. Jr (Editors) (Physical Electronics, Inc., Eden Prairie, Minnesota, 1995) p. 203 Google Scholar
14. Nuesca, G., Prasad, J. and Kelber, J. A., Appl. Surface Science 81, 237249 (1994)Google Scholar
15. Rye, R. and Kelber, J. A., and Kellogg, G. E., Nebesny, K. W. and Lichtenberger, D. L., J. Chem. Phys. 86, 4375 (1987)Google Scholar
16. Jennison, R., Phys. Rev. A23, 1215 (1981)Google Scholar
17. Lassaletta, G., Caballero, A., Wu, S., Gonzalez-Elipe, A. R. and Fernandez, A., Vacuum 45, 1085 (1994)Google Scholar