Published online by Cambridge University Press: 10 February 2011
A modeling of nanoparticles and ab initio simulation of the scattered intensity from the Debye functions is used as a tool for an examination of the strain induced under high pressure in nanocrystalline silicon carbide and diamond. The analysis of the experimental intensity profiles includes a determination of the atomic structure and microstructure of the materials. The advantages of modeling over conventional methods of the analysis of powder diffraction data are discussed. Examples of using the modeling for determination of the shape and size and of one dimensional disordering in very small particles (2-4 nm), and development of internal strains in 10 nm SiC nanocrystals subjected to high pressures are given.