No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
We present simulated photoelectron angular distributions (PAD's) for LiF and graphite. The results describe electron photocurrent versus photon energy, electron initial-state energy, and emission angles (leading to identification of two, or three, components of a valence electron's initial crystal momentum). Results are displayed in a fashion greatly facilitated by display analyzers. Earlier experimental results for LiF are confirmed in great detail. We discuss statistical comparison of theoretical and experimental PAD's. Effects of Bragg- diffraction on outgoing photoelectrons and uncertainty in crystal momentum normal to a surface are analyzed. In graphite, the observed lowering of symmetry, from that in a periodic-zone band structure to that seen in the PAD's, is modeled and explained.