Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:56:09.628Z Has data issue: false hasContentIssue false

Modelling of the Dislocation Influence on Electrical Properties of Polycrystalline Silicon Cells

Published online by Cambridge University Press:  22 February 2011

H. El Ghitani
Affiliation:
Laboratoire de Photoélectricité des Semi-conducteurs, Faculté des Sciences et Techniques de Saint-jérÔme, Université d'Aix- Marseille III, F-13397 Marseille Cedex 13.
S. Martinuzzi
Affiliation:
Laboratoire de Photoélectricité des Semi-conducteurs, Faculté des Sciences et Techniques de Saint-jérÔme, Université d'Aix- Marseille III, F-13397 Marseille Cedex 13.
Get access

Abstract

The influence of the density Ndis and recombination activity Sd of dislocations on the photocurrent Jsc, the spectral variation of Jsc and electron diffusion length Ln are computed by means of the Green's function. Sd is the surface recombination velocity of the space charge cylinder surrounding a dislocation line, assumed to be perpendicular to the illuminated surface of the cells.

It is found that the value and the spectral variation in the near infrared of Jsc and that of Ln, are dependent on Ndis and Sd, specially when Ndis and Sd are higher than 104 cm−2 and 104 cm s−1 respectively. A reasonnable agreement is obtained with experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mathian, G., Amzil, H., Martinuzzi, S. and Oualid, J., Solid State Electronics, 26, 131 (1983).Google Scholar
2 Martinuzzi, S., Solar Cells, 12, 147 (1984).CrossRefGoogle Scholar
3 Pizzini, S., Bogoni, L., -Beghi, M. and Chemelli, C., J. Electrochem. Soc. 133, 2363 (1986).Google Scholar
4 Ranjith, W.M. and Roy, S., J. Appl. Phys. 60, 406 (1987).Google Scholar
5 Yamaguchi, M., Yamamoto, A. and Itho, Y., J. Appl. Phys. 59, 1751 (1986).CrossRefGoogle Scholar
6 Kazmerski, L.L., Proc. of 18 th IEEE Photovoltaic Specialists Conf. (Las Vegas NE 1985), p.993998.Google Scholar
7 Martinuzzi, S., Rev. Phys. Appl. 22, 637 (1987).Google Scholar
8 Battistela, F., Rocher, A. and George, A., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, Edited by Mikkelsen, J.C., Pearton, S.J., Corbett, J.W. and Cook, S.J. Penny (Mater. Res. Soc. Proc. 59, Boston MA 1986) pp.347352.Google Scholar
9 Halder, N.C. and Williams, T.R., Solar Cells, 8, 201 (1983).Google Scholar
10 Elsayad, E.A.E., M.Sc.thesis, Ciaro University, 1985.Google Scholar
11 Dugas, J. and Oualid, J., Solar Cells 20, 167 (1987).CrossRefGoogle Scholar