Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T10:53:17.320Z Has data issue: false hasContentIssue false

Modified Carbon Cryogel-Ammonia Borane Nanocomposites for Hydrogen Storage

Published online by Cambridge University Press:  01 February 2011

Saghar Sepehri
Affiliation:
sepehri@u.washington.edu, University of Washington, Material Sience and Engineering, 302 Roberts Hall, Box 352120, Seattle, WA, 98195, United States, 206-412-2335
Betzaida Batalla Garcia
Affiliation:
bbg5@u.washington.edu, University of Washington, Material Sience and Engineering, 302 Roberts Hall, Box 352120, Seattle, WA, 98195, United States
Qifeng Zhang
Affiliation:
qfzhang@u.washington.edu, University of Washington, Material Sience and Engineering, 302 Roberts Hall, Box 352120, Seattle, WA, 98195, United States
Guozhong Cao
Affiliation:
gzcao@u.washington.edu, University of Washington, Material Sience and Engineering, 302 Roberts Hall, Box 352120, Seattle, WA, 98195, United States
Get access

Abstract

This paper reports the synthesis and characterization of coherent Boron/Nitrogen –doped –carbon cryogels- ammonia borane nanocomposites for hydrogen storage. Resorcinol formaldehyde derived doped carbon cryogels (CC) were obtained via chemical modification.CC- ammonia-borane nanocomposites were made by incorporation of ammonia borane (AB), in CCs. Nitrogen sorption analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy, are used to investigate the structure and morphology of the modified CCs. Differential scanning calorimetry is used to study the dehydrogenation of coherent doped-CC-AB nanocomposites. Modified CCs show higher mesoporosity, and more homogeneous porous structure compared to undoped CCs. Also, dehydrogenation kinetics of nanocomposites is enhanced as compared to neat AB. Possible nanoscale and catalytic effects of nanocomposites in improved dehydrogenation kinetics are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pekala, R. W., Alviso, C. T., Kong, F. M. and Hulsey, S. S., J. Non-Cryst. Solids 145, 90 (1992).10.1016/S0022-3093(05)80436-3Google Scholar
2. Yamamoto, Y., Sugimoto, T., Suzuki, T., Mukai, S. R. and Tamon, H., Carbon 40, 1345 (2002).Google Scholar
3. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. and Poco, J. F., J. Appl. Electrochem. 26, 1007 (1996).Google Scholar
4. Ernest, M. V., Bibler, J. P., Whitley, R. D. and Wang, N. H. L, Ind. Eng. Chem. Res. 36, 2775 (1997).Google Scholar
5. Petricevic, R., Glora, M. and Frick, J., J. Power Sources 271, 167 (2002).Google Scholar
6. Frackowiak, E. and Beguin, F., Carbon 39, 937 (2001).Google Scholar
7. Pekala, R.W., J. Mater. Sci. 24, 3221 (1989).10.1007/BF01139044Google Scholar
8. Tamon, H., Ishizaka, H., Yamamoto, T. and Suzuki, T., Carbon 37, 2049 (1999).Google Scholar
9. Al-Muhtaseb, S.A. and Ritter, J. A., Adv. Mater. 15, 101 (2003).10.1002/adma.200390020Google Scholar
10. Sing, K. S. W, Everett, D. H., Haul, R. A. W, Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).Google Scholar
11. Zhu, Z. H., Hatori, H., Wang, S. B. and Lu, G.Q., J. phys. Chem. B109, 16744 (2005)Google Scholar
12. Fu, R., Dresselhaus, M. S., Dresselhaus, G., Zheng, B., Liu, J., Satcher, J. H., and Baumann, T. F., J. Non-Cryst. Solids, 318, 223 (2003)Google Scholar
13. Bérubé, V., Radtke, G., Dresselhaus, M. and Chen, G., Int. J. Energy Res. 31, 637 (2007)10.1002/er.1284Google Scholar
14. Vajo, J. J. and Olson, G. L., Scr Mater 56, 829 (2007).Google Scholar
15. Baitalow, F., Baumann, J., Wolf, G., Jaenicke-Rößler, K., and Leitner, G., Thermochim. Acta. 391, 159 (2002).Google Scholar
16. Feaver, A. M., Sepehri, S., Shamberger, P., Stowe, A., Autrey, T., and Cao, G. Z., J. Phys. Chem. B111, 7469 (2007)Google Scholar
17. Gutowska, A., Li, L., Shin, Y., Wang, C. M., Li, X. S., Linehan, J. C., Smith, R.S., Kay, B. D., Schmid, B., Shaw, W., Gutowski, M., and Autrey, T., Angew. Chem., Int. Ed. 44, 3578 (2005).Google Scholar
18. Feaver, A. and Cao, G. Z., Carbon 44, 590 (2006).Google Scholar
19. Fu, R., Yoshizawa, N., Dresselhaus, M. S., Dresselhaus, G., Satcher, J.H. and Baumann, T.F., Langmuir 18, 10100 (2002)Google Scholar
20. Hoffmann, F. P., Wolf, G. and Hansen, L. D., Advances in Boron chemistry, R. Soc. Chem. Cambridge, 514 (1997).Google Scholar