Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T06:36:14.739Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Thermal Conductivity of Diamondoid Crystals

Published online by Cambridge University Press:  01 February 2011

Ming Hu
Affiliation:
hum2@rpi.edu, RENSSELAER POLYTECHNIC INSTITUTE, MATERIALS SCIENCE AND ENGINEERING, 110 8TH ST., TROY, NY, 12180-3590, United States, 518-276-8826
Sergei Shenogin
Affiliation:
shenos3@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, NY, 12180, United States
Pawel Keblinski
Affiliation:
keblip@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, Troy, NY, 12180, United States
Arun Majumdar
Affiliation:
majumdar@me.berkeley.edu, University of California, Berkeley, Departments of Mechanical Engineering and Materials Science and Engineering, Berkeley, CA, 94720, United States
Get access

Abstract

Hydrocarbon molecules with diamond structure, called diamondoids have gain considerable interest as promising nanoscale building blocks. Very large mismatch between strong, covalent intramolecular bonding and weak intermolecular bonding suggests interesting phonon related properties for diamondoid crystal. We use molecular dynamics (MD) simulations to examine thermal transport of diamondoid crystals. In particular, thermal conductivity of small molecule adamantine and larger molecule pentamantane crystal is studied by equilibrium and non-equilibrium MD. The thermal conductivity of both materials is low, but comparable with that characterizing fullerene crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dahl, J. E., Liu, S. G. and Carlson, R. M. K., Science 299, 96 (2003).Google Scholar
2. Brenner, D. W., Shenderova, O. A., Areshkin, D. A., Schall, J. D. and Frankland, S. -J. V., Comput. Model. Eng. Sci. 3, 643 (2002).Google Scholar
3. Grill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R. and Phillpot, S. R., J. Appl. Phys. 93, 793 (2003).Google Scholar
4. Mcgaughey, A. J. H. and Kaviany, M., Adv. Heat Tran. 39, 169 (2006).Google Scholar
5. Schelling, P. K. and Phillpot, S. R., J. Am. Ceram. Soc. 84, 2297 (2001).Google Scholar
6. Jund, P. and Jullien, R., Phys. Rev. B 59, 13707 (1999).Google Scholar
7. Evans, D. J., Phys. Lett. 91A, 457 (1982).Google Scholar
8. Che, J., Cagin, T., Deng, W. and Goddard, W. A., J. Chem. Phys. 113, 6888 (2000).Google Scholar
9. Voltz, S. G. and Chen, G., Phys. Rev. B 61, 2651 (2000).Google Scholar
10. Amoureux, J. P., Bee, M. and Damien, J. C., Acta Cryst. B 36, 2633 (1980).Google Scholar
11. Nordman, C. E. and Schmitkons, D. L., Acta Cryst. 18, 764 (1965).Google Scholar
12. Nath, S. K., Escobedo, F. A. and Pablo, J. J. de, J. Chem. Phys. 108, 9905 (1998).Google Scholar
13. Nowacki, W., Helvetica Chimica Acta, 28, 1233 (1945).Google Scholar
14. Schelling, P. K., Phillpot, S. R. and Keblinski, P., Phys. Rev. B 65, 144306 (2002).Google Scholar
15. Wigren, J. and Andersson, P., Mol. Cryst. Liq. Cryst. 59, 137 (1980).Google Scholar
16. Yu, R. C., Tea, N., Salamon, M. B., Lorents, D. and Malhotra, R., Phys. Rev. Lett. 68, 2050 (1992).Google Scholar
17. Olson, J. R., Topp, K. A. and Pohl, R. O., Science 259,1145 (1993).Google Scholar