Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:53:24.521Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of Thermal Disorder in a Bicrystal Model

Published online by Cambridge University Press:  15 February 2011

Tue Nguyen
Affiliation:
IBM General Technology Division, Essex Junction, VT 05452
Paul S. Ho
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Thomas Kwok
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Cynthia Nitta
Affiliation:
Lawrence Livermore Laboratory, Livermore, CA 94550
Sidney Yip
Affiliation:
Department of Nuclear Engineering, M.I.T., Cambridge, MA 02139
Get access

Abstract

This work studies a (310) θ = 36.86° <001> symmetrical-tilt bicrystal model using an Embedded Atom Method aluminum potential. Based on explicit results obtained from the simulations regarding structural order, energy, and mobility, we find that our bicrystal model shows no evidence of pre-melting (complete melting below Tm). Both the surface and the grain-boundary interface exhibit thermal disorder at temperatures below Tm, with complete melting occurring only at, or very near, Tm. Concerning the details of the onset of melting, the data show considerable disordering in the interfacial region starting at about 0.93 Tm. The interfaces exhibit metastable behavior in this temperature range, and the temperature variation of the interfacial thickness suggests that the disordering induced by the interface is a continuous transition, a behavior that has been predicted by a theoretical analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aust, K.T., Can Metall., Q8, 173 (1969);CrossRefGoogle Scholar
Lagarde, P., Biscondi, M., Can Metall., Q1, 245 (1974);CrossRefGoogle Scholar
Demianczuk, D.W., Aust, K.T., Acta Metall., 23, 1149 (1975).CrossRefGoogle Scholar
[2] Watanabe, T., Kimura, S.-I., Karashima, S., Phil. Mag. A42 845 (1984).CrossRefGoogle Scholar
[3] Hsieh, T.E., Balluffi, R.W., Acta Metall., 37, 1637 (1989).CrossRefGoogle Scholar
[4] Ciccotti, G., Guillope, M., Pontikis, V., Phys. Rev., B 27, 5576 (1983);CrossRefGoogle Scholar
Guillope, M., Ciccotti, G., Pontikis, V., Surf. Sci., 144, 67 (1984).CrossRefGoogle Scholar
[5] Nguyen, T., Ho, P.S., Kwok, T., Nitta, C., Yip, S., Phys. Rev. Lett., 57, 1919 (1986);CrossRefGoogle Scholar
Ho, P.S., Kwok, T., Nguyen, T., Nitta, C., Yip, S., Scripta Metall., 19, 993 (1985).CrossRefGoogle Scholar
[6] Deymier, P., Taiwo, A., Kalonji, G., Acta Metall., 35, 2719 (1987).CrossRefGoogle Scholar
[7] Broughton, J.Q., Gilmer, G.H., Phys. Rev. Lett., 56, 2692 (1986).CrossRefGoogle Scholar
[8] Daw, M.S., Baskes, M.I., Phys. Rev., B29, 6443 (1984);CrossRefGoogle Scholar
Foiles, S.M., Baskes, M.I., Daw, M.S., Phys. Rev., B12, 7983 (1985).Google Scholar
[9] Phillpot, S.R., Lutsko, J.F., Wolf, D., Yip, S., Phys. Rev., B40, 2831 (1989).CrossRefGoogle Scholar
[10] Lutsko, J.F., Wolf, D., Phillpot, S.R., Yip, S., Phys. Rev., B40, 2841 (1989).CrossRefGoogle Scholar
[11] Lipowsky, R., Speth, W., Phys. Rev., B28, 3983 (1985).CrossRefGoogle Scholar