Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:18:42.579Z Has data issue: false hasContentIssue false

Molecular Electronics with Large-area Molecular Junctions

Published online by Cambridge University Press:  01 February 2011

Hylke B. Akkerman
Affiliation:
h.b.akkerman@rug.nl, Zernike Institute for Advanced Materials, University of Groningen, Molecular Electronics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Auke J. Kronemeijer
Affiliation:
a.j.kronemeijer@rug.nl, Zernike Institute for Advanced Materials, University of Groningen, Molecular Electronics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Paul W. M. Blom
Affiliation:
p.w.m.blom@rug.nl, Zernike Institute for Advanced Materials, University of Groningen, Molecular Electronics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Paul van Hal
Affiliation:
paul.van.hal@philips.com, Philips Research, Eindhoven, 5656 AE, Netherlands
Dago M. de Leeuw
Affiliation:
dago.de.leeuw@rug.nl, Zernike Institute for Advanced Materials, University of Groningen, Molecular Electronics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Bert de Boer
Affiliation:
b.de.boer@rug.nl, Zernike Institute for Advanced Materials, University of Groningen, Molecular Electronics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Get access

Abstract

A technology is demonstrated to fabricate reliable metal-molecule-metal junctions with unprecedented device diameters up to 100 μm. The yield of these molecular junctions is close to unity. Preliminary stability investigations have shown a shelf life of years and no deterioration upon cycling. Key ingredients are the use of a conducting polymer layer (PEDOT:PSS) sandwiched between a bottom electrode with a self-assembled monolayer (SAM) and the top electrode to prevent electrical shorts, and processing in lithographically defined vertical interconnects (vias) to prevent both parasitic currents and interaction between the environment and the SAM [1].

Modeling the current–voltage (I–V) characteristics of alkanedithiols with the Simmons model showed that the low dielectric constant of the molecules in the junction results in a strong image potential that should be included in the tunneling model. Including image force effects, the tunneling model consistently describes the current-voltage characteristics of the molecular junctions up to 1 V bias for different molecule lengths [2].

Furthermore, we demonstrate a dependence of the I–V characteristics on the monolayer quality. A too low concentration of long alkanedithiols leads to the formation of looped molecules, resulting in a 50-fold increase of the current through the SAM. To obtain an almost full standing-up phase of 1,14-tetradecanedithiol (C14) a 30 mM concentration is required, whereas a 0.3 mM concentration leads to a highly looped monolayer. The conduction through the full standing-up phase of C14 and C16 is in accordance with the exponential dependence on molecular length as obtained from shorter alkanedithiols [3].

Finally, a fully functional solid-state molecular electronic switch is manufactured by conventional processing techniques. The molecular switch is based on a monolayer of photochromic diarylethene molecular switches. The monolayer reversibly switches the conductance by more than one order of magnitude between the two conductance states via optical addressing. This reversible conductance switch operates as an electronic ON/OFF switch (or a reprogrammable data storage unit) that can be optically written and electronically read [4].

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akkerman, H. B. Blom, P. W. M. Leeuw, D. M. de, Boer, B. de, Nature, 441, 6972 (2006).Google Scholar
2. Akkerman, H. B. Naber, R. C. G. Jongbloed, B. Hal, P. A. van, Blom, P. W. M. Leeuw, D. M. de, Boer, B. de, Proc. Natl Acad. Sci USA, 104, 1116111167 (2007).Google Scholar
3. Akkerman, H. B. Kronemeijer, A. J. Hal, P. A. van, Leeuw, D. M. de, Blom, P. W. M. Boer, B. de, Small, 4, 100104 (2008).Google Scholar
4. Kronemeijer, A. J. Akkerman, H. B. Kudernac, T. Wees, B. J. van, Feringa, B. L. Blom, P. W. M. Boer, B. de, in press, Adv. Mater., (2008).Google Scholar
5. Herwald, S. W. Angello, S. J. Science, 132, 11271133 (1960).Google Scholar
6. Moore, G. E. Electronics, 38, 114117 (1965).Google Scholar
7. Aviram, A. Ratner, M.A., Chem. Phys. Lett., 29, 277283 (1974).Google Scholar
8. Boer, B. de, Meng, H. Perepichka, D. Zheng, J. Frank, M. M. Chabal, Y. J. Bao, Z. Langmuir, 19, 42724284 (2003).Google Scholar
9. Love, J. C. Estroff, L. A. Kriebel, J. K. Nuzzo, R. G. Whitesides, G. M. Chem. Rev., 105, 11031169 (2005) and references therein.Google Scholar
10. Boer, B. de, Hadipour, A. Mandoc, M. M. Woudenbergh, T. van, Blom, P. W. M. Adv. Mater., 17, 621625 (2005).Google Scholar
11. Boer, B. de, Frank, M. M. Chabal, Y. J. Jiang, W. Garfunkel, E. Bao, Z. Langmuir, 20, 15391542 (2004).Google Scholar
12. Chang, S.C. Li, Z. Lau, C. N. Larade, B. Williams, R. Stanley, Appl. Phys. Lett., 83, 31983200 (2003).Google Scholar
13. Tomfohr, J. K. Sankey, O. F. Phys. Rev. B, 65, 245105 (2002).Google Scholar
14. Mann, B. Kuhn, H. J. Appl. Phys., 42, 43984405 (1971).Google Scholar
15. Salomon, A. Cahen, D. Lindsay, S. Tomfohr, J. Engelkes, V. B. Frisbie, C. D. Adv. Mater., 15, 18811890 (2003).Google Scholar
16. Akkerman, H. B. Boer, B. de, J. Phys. Conden. Matter., 20, 01300 (2008).Google Scholar
17. Chen, F. Hihath, J. Huang, Z. Li, X. Tao, N. J. Annu. Rev. Phys. Chem., 58, 535564 (2007).Google Scholar
18. Lindsay, S. M. Ratner, M. A. Adv. Mat., 19, 2331 (2007).Google Scholar
19. Tao, N. J. Nature Nanotechnology, 1, 173181 (2006).Google Scholar
20. Solomon, G. C. Gagliardi, A. Pecchia, A. Frauenheim, T. Carlo, A. Di, Reimers, J. R. Hush, N. S. J. Chem. Phys., 124, 094704 (2006).Google Scholar
21.a) Simmons, J. G. J. Appl. Phys. 34, 17931803 (1963). b). J. G. Simmons, J. Appl. Phys. 34, 2581-2590 (1963).Google Scholar
22. Wang, W. Lee, T. Reed, M. A. Phys. Rev. B 68, 035416–1 (2003).Google Scholar
23. Li, Z. He, J. Hihath, J. , Xu, B. Lindsay, S. M. Tao, N. J. Am. Chem. Soc. 128, 21352141 (2006).Google Scholar
24. Fujihira, M. Inokuchi, H. Chem. Phys. Lett. 17, 554556 (1972).Google Scholar
25. Lau, C. N. Stewart, D. R. Williams, R. S. Bockrath, M. Nanoletters 4, 569572 (2004).Google Scholar