Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:37:26.002Z Has data issue: false hasContentIssue false

Nano Crystalline Silicon Film Serves as the Emission Material for the Field Emission Pressure Sensor

Published online by Cambridge University Press:  17 March 2011

Liao Bo*
Affiliation:
Electronics Engineering Depart., Beijing Institute of Technology, Beijing, 100081, China
Get access

Abstract

The prototype of a field-emission pressure sensor with a novel structure based on the quantum tunnel effect is designed and manufactured. Moreover the nano crystalline silicon film technology is introduced into the fabrication of the device effectively, which performs the function mostly as the field-emission material, the device field-emission characteristic of the nano silicon film is investigated, the experimental results show that the measured current density emitted from the effective area of the sensor can reach 53.5A/m2, when the exterior electric field is 5.6×105V/m.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, H. C.,Transducers 91:6th Int. Conf. on Solid State Sensors and Actuators. San Francisco, 8 1991,241 Google Scholar
2. Jiang, J.C., Transducers 91:6th Int. Conf. on Solid State Sensors and Actuators. San Francisco, CA, 1991,238 Google Scholar
3. Busta, H. H., J.Micromech. Microeng., 3,49(1993)Google Scholar
4. Nicolaescu, D., Appl.Surf.Sci., 87/88,61(1995)Google Scholar
5. Xia, S. H., J.Vac.Sci.Technol.B, 16(3),1226(1998)Google Scholar
6. Liao, B., Lin, H. Y., Wan, Y., Vacuum Science and Technology, 20(6),413(2000)Google Scholar
7. Wang, C., Gracia, A., Ingram, D.C., Electron.Lett. 27,1459(1991)Google Scholar
8. Okano, K., Yamada, T., Appl.Phys.Lett. 70,2201(1997)Google Scholar
9. Amaratunga, G.A.J. and Silva, S.R.P., Appl.Phys.Lett. 68,2529(1996)Google Scholar
10. Missert, N., Friedmann, T.A., Appl.Phys.Lett. 70,1995(1997)Google Scholar
11. Charbonnier, F., J.Vac.Sci.Technol., 16,880(1998)Google Scholar
12. Hickman, J. J., Bergeron, G L.,Technical Digest 5th Int. Vacuum Microelectronics Conf., Vienna, Austris, 108(1992)Google Scholar
13. Jessing, J.R., Kim, H R et al. , J.Vac.Sci.Technol. B16(2), 777779(1998)Google Scholar
14. Jessing, J.R., Parker, D.L. et al. , J.Vac.Sci.Technol.B 14,1899(1996)Google Scholar
15. Bonard, J-M, Salvetat, J-P, Appl.Phys.Lett. 73,918(1998)Google Scholar
16. Kenneth, A., , Dean and , Babu Chalamala, R., Appl.Phys.Lett. 76(3),375377(2000)Google Scholar
17. C.K.Au Frederick, Wong, K.W., Tang, Y.H., Appl.Phys.Lett., 75(12),17001702 1999 Google Scholar
18. Wong, K.W., Zhou, X.T., Appl.Phys.Lett. 75(19),2919(1999)Google Scholar
19. Liao, B., Han, J.B., Progress in nature science, 2,1 (2001)Google Scholar