Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T07:02:18.556Z Has data issue: false hasContentIssue false

Near-Infrared Emission from a Porous Silicon Device

Published online by Cambridge University Press:  28 February 2011

J. Penczek
Affiliation:
Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616
A. Knoesen
Affiliation:
Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616
H. W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
R. L. Smith
Affiliation:
Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616
Get access

Abstract

Visible to near-infrared emission is produced from a porous silicon device under current injection. The porous silicon emitter is fabricated by selectively under-etching a p-n junction. The device is rectifying when biased across the junction, and exhibits a region of negative differential resistance (NDR) at the higher current levels. Bright red-orange emission is observed along the length of the junction in forward bias, but most of the light is emitted in the near-infrared with a peak near 1.3 µm at 30 mA. The intensity of the visible component has an exponential dependence on photon energy. The optical and electrical properties of this device are presented and possible mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2 Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Electron Dev. Lett. 12, 691 (1991)Google Scholar
3 Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992)Google Scholar
4 Namavar, F., Maruska, H. P., and Kalkhoran, N. M., Appl. Phys. Lett. 60, 2514 (1992)Google Scholar
5 Bassous, E., Freeman, M., Halbout, J. M., Iyer, S. S., Kesan, V. P., Mungia, P., Pesarcik, S. F., and Williams, B. L., in Light Emission from Silicon, edited by Iyer, S. S., Canham, L. T., and Collins, R. T. (Materials Research Society, Pittsburgh, PA, 1992) 256, 23 Google Scholar
6 Chen, Z., Bosman, G., and Ochoa, R., Appl. Phys. Lett. 62, 708 (1993)Google Scholar
7 Koch, F. and Kux, A., in Silicon-Based Optoelectronic Materials, edited by Tischler, M. A., Collins, R. T., Thewalt, M. L. W., and Abstreiter, G. (Materials Research Society, Pittsburgh, PA, 1993) 298, 391 Google Scholar
8 Gardelis, S., Dawson, P., and Hamilton, B., MRS Symp. Proc. 298, 337 (1993)Google Scholar
9 Fauchet, P. M., Ettedgui, E., Raisanen, A., Brillson, L.J., Seiferth, F., Kurinec, S. K., Gao, Y., Peng, C., and Tsybeskov, L., MRS Symp. Proc. 298, 271 (1993)Google Scholar
10 Imai, K. and Unno, H., IEEE Trans. Electron Dev. ED-31, 297 (1984)Google Scholar
11 Newman, R., Phys. Rev. 100, 700 (1955)Google Scholar
12 Chynoweth, A. G. and McKay, K. G., Phys. Rev. 102, 369 (1956)Google Scholar
13 Toriumi, A., Yoshimi, M., Iwase, M., Akiyama, Y., and Taniguchi, K., IEEE Trans. Electron Dev. ED-34, 1501 (1987)Google Scholar
14 Das, N. C. and Arora, B. M., Appl. Phys. Lett. 56, 1152 (1990)Google Scholar
15 Bude, J., Sano, N., and Yoshii, A., Phys. Rev. B 45, 5848 (1992)Google Scholar
16 Meyer, B. K., Hofmann, D. M., Stadler, W., Petrova-Koch, V., Koch, F., Emanuelsson, P., and Omling, P., J. Luminescence 57, 137 (1993)Google Scholar