Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:06:16.691Z Has data issue: false hasContentIssue false

Near-Intrinsic Microcrystalline Silicon for Use in Thin Film Transistors

Published online by Cambridge University Press:  15 February 2011

M. W. D. Froggatt
Affiliation:
Department of Engineering, Cambridge University, Cambridge, England
W. I. Milne
Affiliation:
Department of Engineering, Cambridge University, Cambridge, England
M. J. Powell
Affiliation:
Philips Research Laboratories, Redhill, Surrey, England
Get access

Abstract

Inverted-staggered thin film transistors (TFTs) incorporating hydrogenated microcrystalline silicon for both contact and channel regions have been fabricated by plasma enhanced chemical vapour deposition (PECVD) using the high hydrogen-dilution method. The deposition parameters for the channel region were chosen to yield near-intrinsic material with a dark conductivity activation energy of 0.7 eV and a Tauc gap of 1.98 eV, while the doped contact layer was optimised to produce a high dark conductivity of 10 S/cm.

These devices exhibit a low off-current but the field effect mobility is found to be lower than that of similar devices incorporating an optimised amorphous silicon channel region. The mobility activation energy in these devices is similar to those incorporating an amorphous channel, but the mobility pre-factor is reduced. We propose that this is due to inhomogeneous conduction through a microcrystalline region with a smaller grain size at the dielectric/channel interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saitoh, K., Ishiguro, N., Yanagawa, N., Tanaka, H., Sadamoto, M., Fukuda, S., Ashida, Y. and Fukuda, N., J. Non-Cryst. Solids, 198–200, 10931096, (1996)Google Scholar
2. He, S. S. and Lucovsky, G., Mat. Res. Soc. Symp. Proc, 336, 2530, (1994)Google Scholar
3. Mireshghi, A., Hong, W. S., Drewery, J., Jing, T., Kaplan, S. N., Lee, H. K. and Perez-Mendez, V., Mater. Res. Soc. Proc. Spring, (1994)Google Scholar
4. Matsuda, A., J. Non-Cryst. Solids, 59&60, 767774, (1983)Google Scholar
5. Finger, F., Hapke, P., Xuysberg, M, Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett, 65, 20, 25882590, (1994)Google Scholar
6. Fang, M., Chevrier, J. B. and Drévillon, B., J. Non-Cryst. Solids, 137&138, 791794, (1991)Google Scholar
7. Park, K. C., Kim, S. K., Park, M., Jun, J. M., Lee, K. H. and Jang, J., Solar Energy Materials, 34, 509515,(1995)Google Scholar
8. Moon, D. G., Jung, B. H., Lee, J. N., Ahn, B. A., Im, H. B., Nam, K. S. and Kang, S. W., 5, 364369, (1994)Google Scholar
9. Saha, S. C. and Ray, Swati, J. Appl. Phys., 78, 9, 57135720, (1995)Google Scholar
10. Torres, P., Meier, J., Flückiger, R., Kroll, U., Anna Selvan, J. A., Keppner, H., Shah, A., Littlewood, S. D., Kelly, I. E. and Giannoulès, P., Appl. Phys. Lett, 69, 10, 13731375, (1996)Google Scholar
11. Lim, H. J., Ryu, B. Y. and Jang, J., Appl. Phys. Lett, 66, 21, 28882890, (1995)Google Scholar
12. van Oort, R. C., Geerts, M. J., van den Heuvel, J. C. and Metselaar, J. W., Electronics Letters, 23, 18, 967968, (1987)Google Scholar
13. Clough, F. J., Cambridge University Ph.D. Thesis, (1991)Google Scholar
14. Deane, S. C, Clough, F. J., Milne, W. I. and Powell, M. J., J. Appl. Phys., 73, 6, 28952901, (1993)Google Scholar
15. Wang, L. C., Feng, D., Epicier, T., Esnouf, C., Xia, H., He, Y. L., Li, Q., Chu, Y. M. and Ming, N. B., Appl. Phys. Lett, 66, 8, 968970, (1995)Google Scholar
16. Yang, Y. H., Katiyar, M., Feng, G. F., Maley, N. and Abelson, J. R., Appl. Phys. Lett, 65, 14, 17691771,(1994)Google Scholar