Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T04:05:10.617Z Has data issue: false hasContentIssue false

Needles and Haystacks: Influence of Catalytic Metal Nanoparticles on Structural and Vibrational Properties and Morphology of Silicon Nanowires Synthesized by Metal-Assisted Chemical Etching

Published online by Cambridge University Press:  05 August 2013

M. K. Dawood
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd, Singapore 738406.
S. Tripathy
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency of Science Technology and Research (A*STAR), Singapore 117602.
S. B. Dolmanan
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency of Science Technology and Research (A*STAR), Singapore 117602.
T. H. Ng
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd, Singapore 738406.
T. Hao
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd, Singapore 738406.
J. Lam
Affiliation:
GLOBALFOUNDRIES Singapore Pte. Ltd, Singapore 738406.
Get access

Abstract

Metal-assisted chemical etching (MACE) of silicon (Si) is a simple and low-cost process to fabricate Si nanostructures with varying aspect ratio and properties. In this work, we report on the structural and vibrational properties of Si nanostructures synthesized with varying metal catalyst. The morphology of the synthesized nanowires was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible and near-infrared) and are correlated to their microstructures. We propose that the excessive injection of holes into Si at the metal-Si interface and its diffusion to the nanowire surfaces facilitate the etching of Si on these surfaces, leading to a mesoporous network of Si nanocrystallites. When etched with catalytic Au nanoparticles, “hay-stacked” mesoporous Si nanowires were obtained. The straighter nanowires etched with Ag nanoparticles, consisted of a single crystalline core with a thin porous layer that decreased in thickness towards the base of the nanowire. This difference is due to the higher catalytic activity of Au compared to Ag for H2O2 decomposition. The SERRS observed during UV and visible Raman with Ag-etched Si nanowires and near-infrared Raman with Au-etched Si nanowires is due to the presence of the sunken metal nanoparticles. In addition, we explored the influence of varying H2O2 and HF concentration as well as the influence of increased etching temperature on the resultant nanostructured Si morphology. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, Z., Geyer, N., Werner, P., de Boor, J. and Gosele, U., Adv. Mater 23, 285308 (2011).CrossRefGoogle Scholar
Yuan, G. D., Zhou, Y. B., Guo, C. S., Zhang, W. J., Tang, Y. B., Li, Y. Q., Chen, Z. H., He, Z. B., Zhang, X. J., Wang, P. F., Bello, I., Zhang, R. Q., Lee, C.S. and Lee, S. T., ACS Nano 4, 3045 (2010).CrossRefGoogle Scholar
Hocbaum, A. I., Chen, R. K., Delagao, R. D., Liang, W. J., Garnett, E. C., Narjarian, M. and Yang, P. D., Nature (London) 451, 163167 (2008).CrossRefGoogle Scholar
Dawood, M. K., Zheng, H., Kurniawan, N. A., Leong, K. C., Foo, Y. L., Rajagopalan, R., Khan, S. A. and Choi, W. K., Soft Matter 8, 35493557 (2012).CrossRefGoogle Scholar
Dawood, M. K., Zheng, H., Liew, T. H., Leong, K. C., Foo, Y. L., Rajagopalan, R., Khan, S. A. and Choi, W. K., Langmuir 27, 41264133 (2011).CrossRefGoogle Scholar
Dawood, M. K., Tripathy, S., Dolmanan, S. B., Ng, T. H., Tan, H. and Lam, J., J. Appl. Phys. 112, 073509 (2012).CrossRefGoogle Scholar
Li, X. and Bohn, P. W., Appl. Phys. Lett. 77, 2572 (2000).CrossRefGoogle Scholar
Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett 82, 197200 (1999).CrossRefGoogle Scholar
Tsu, R., Shen, H. and Dutta, M., Appl. Phys. Lett. 60, 112 (1992).CrossRefGoogle Scholar
Seo, Y. H., Lee, H.-J., Jeon, H. I., Oh, D. H., Nahm, K. S., Lee, Y. H., Suh, E.-K., Lee, H. J. and Kwang, Y. G., Appl. Phys. Lett. 62, 1818 (1993).CrossRefGoogle Scholar
Hocbaum, A. I., Gargas, D., Hwang, Y. J. and Yang, P. D., Nano Lett. 9, 35503554 (2009).CrossRefGoogle Scholar
Chen, S.-Y., Mock, J. J., Hill, R. T., Chilkoti, A., Smith, D. R. and Lazarides, A. A., ACS Nano 4, 65366546 (2010).Google Scholar
Fan, J.-G. and Zhao, Y.-P., Langmuir 24, 141472–14175 (2008).Google Scholar
Sanchez-Sanchez, C. M. and Bard, A. J., Anal. Chem. 81, 80948100 (2009).CrossRefGoogle Scholar
Magoariec, H. and Danescu, A., Phys. Status Solidi C 7, 16801684 (2009).CrossRefGoogle Scholar