Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T03:45:58.472Z Has data issue: false hasContentIssue false

Niobate Films for Microwave Applications

Published online by Cambridge University Press:  21 March 2011

C.-R. Cho
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44 Stockholm, SWEDEN
J.-H. Koh
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44 Stockholm, SWEDEN
A.M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44 Stockholm, SWEDEN
S. Abadei
Affiliation:
Department of Microelectronics, Chalmers University of Technology, S-412 96 Göteborg, SWEDEN
S. Gevorgian
Affiliation:
Department of Microelectronics, Chalmers University of Technology, S-412 96 Göteborg, SWEDEN
Get access

Abstract

Submicron thick niobate films, Na0.5K0.5NbO3 (NKN) and Ag0.9Ta0.42Nb0.58O3-δ (ATN), have been pulsed laser deposited on MgO, Pt80Ir20, and Si substrates for microwave device applications. Strong bi-axial (001)-(011) texture observed in both films on MgO substrates indicates that there are major similarities in the growth mechanisms in these films. The dielectric permittivity ε′ of NKN film increases monotonously with temperature, while that of ATN shows a weak temperature dependence (about 21% of variation) in a wide temperature range from 77 K to 400 K. Measured tunability Δε′/ε′ and dielectric loss tanδ for niobate/MgO interdigital capacitors have been found to be (Δε′/ε′)NKN = 40%, tanδNKN = 1.4-2.3% and (Δε′/ε′)ATN = 4.3%, tanδATN = 0.23-0.25% at 1 MHz under maximum electric field of 100 kV/cm. Microwave spectroscopy studies for NKN/Si varactors show (Δε′/ε′)NKN/Si of 13% and tanδNKN/Si = 1.2-6.6% at 40 GHz @ 200 kV/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gim, Y., Hudson, T., Fan, Y., Kwon, C., Findikoglu, A. T., Gibbons, B. J., Park, B. H., and Jia, Q. X., Appl. Phys. Lett. 77, 1200 (2000).Google Scholar
[2] Vendik, O. G., Hollmann, E. K., Kozyrev, A. B., and Prudan, A. M., J. Superconductivity, 12, 325 (1999).Google Scholar
[3] Carlson, C. M., Rivkin, T. V., Parilla, P. A., Perkins, J. D., Ginley, D. S., Kozyrev, A. B., Oshadchy, V. N., and Pavlov, A. S., Appl. Phys. Lett. 76, 1920 (2000).Google Scholar
[4] Lancaster, M. J., Powell, J., and Porch, A., Supercond. Sci. Technol. 11, 1323 (1998).Google Scholar
[5] Shirane, G., Newnham, R., and Pepinsky, R., Phys. Rev. 96, 581 (1954).Google Scholar
[6] Kania, A., Phase Transit. 3, 131 (1983).Google Scholar
[7] Nystrom, M. J., Wessels, B. W., Chen, J., and Marks, T. J., Appl. Phys. Lett. 68, 761 (1996).Google Scholar
[8] Cho, C.-R., Koh, J.-H., Grishin, A.M., Abadei, S., Petrov, P., and Gevorgian, S., Mat. Res. Soc. Proc. 623, 109 (2000).Google Scholar
[9] Koh, J.-H., Khartsev, S. I., and Grishin, A., Appl. Phys. Lett. 77, 4416 (2000).Google Scholar
[10] Metev, S. and Meteva, K., Appl. Surf. Sci. 43, 402 (1989).Google Scholar
[11] Jia, Q. X., Groves, J. R., Arendt, P., Fan, Y., Findikoglu, A. T., and Foltyn, S. R., Jiang, H., Miranda, F. A., Appl. Phys. Lett. 69, 25 (1996).Google Scholar
[12] Chang, Wontae, Horwitz, James S., Carter, Adriaan C., Pond, Jeffrey M., Kirchoefer, Steven W., Gilmore, Charles M., and Chrisey, Douglas B., Appl. Phys. Lett. 74, 1033 (1999).Google Scholar
[13] Kittel, C., Phys. Rev. 83, 458 (1951).Google Scholar
[14] Petrov, P., Ivanov, Z., and Gevorgian, S., Proc. 30th EuMC, 3, 218 (2000).Google Scholar