Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:03:18.475Z Has data issue: false hasContentIssue false

Nitrogen Implantation Effects on the Chemical Bonding and Hardness of Boron and Boron Nitride Coatings

Published online by Cambridge University Press:  10 February 2011

Alan Jankowski
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550
Thomas Felter
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550
Robert Patterson
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550
Jeffrey Hayes
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550
Simone Anders
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Thomas Stamler
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
David Poker
Affiliation:
Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831
Get access

Abstract

Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N2) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B ls photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N+ and N2+) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B ls NEXAFS spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jankowski, A., Hayes, J., M'Kernan, M. and Makowiecki, D., Thin Solid Films 308–309, p. 94 (1997).Google Scholar
2. Jankowski, A. and Hayes, J.P., Diamond Relat. Mater. 7, p. 380 (1997).Google Scholar
3. Jiménez, I., Jankowski, A., Terminello, L., Carlisle, J., Sutherland, D., Doll, G., Mantese, J., Tong, W., Shuh, D. and Himpsel, F., Appl. Phys. Lett. 68, p. 2,816 (1996).Google Scholar
4. Jiménez, I., Jankowski, A., Terminello, L., Sutherland, D., Carlisle, J., Doll, G., Tong, W., Shuh, D., and Himpsel, F., Phys. Rev. B 55, p. 12,025 (1997).Google Scholar
5. M'Kernan, M., Makowiecki, D., Ramsey, P. and Jankowski, A., Surf. Coatings Technol. 49, p. 411 (1991).Google Scholar
6. Makowiecki, D. and MKernan, M., Fabrication of Boron Sputter Targets, U.S. Patent No. 5,392,981 (February 28, 1995).Google Scholar
7. Stöhr, J., NEXAFS Spectroscopy, Springer, New York, NY (1992).Google Scholar
8. Terminello, L., Chaiken, A., Lapiano-Smith, D., Doll, G. and Sato, T., J. Vac. Sci. Technol. A 12, p. 2,462 (1994).Google Scholar
9. M‘Lean, A., Terminello, L. and Himpsel, F., Phys. Rev. B 41, p. 7,694 (1990).Google Scholar
10. Jankowski, A., Jimönez, I., Hayes, J., Shuh, D., Sutherland, D., Carlisle, J., Terminello, L. and Himpsel, F., in Applications of Synchrotron Radiation to Materials Science III, edited by L. Terminello, S. Mini, D. Perry and H. Ade (Mater. Res. Soc. Proc. 437, Pittsburgh, PA, 1996), p. 207210.Google Scholar
11. Loubet, J., Georges, J. and Meille, J., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. and Lawn, B. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 7289.Google Scholar
12. Hainsworth, S., Chandler, H. and Page, T., J. Mater. Res. 11, p. 1,987 (1996).Google Scholar
13. Doerner, M. and Nix, W., J. Mater. Res. 1, p. 601 (1986).Google Scholar
14. Pharr, G., Oliver, W. and Brotzen, F., J. Mater. Res. 7, p. 613 (1992).Google Scholar
15. Oliver, W. and Pharr, G., J. Mater. Res. 7, p. 1,564 (1992).Google Scholar
16. ASTM Standard E 92, in Annual Book of Standards 3.01, American Society for Testing and Materials, Philadelphia, PA, p. 264 (1987).Google Scholar
17. Jankowski, A., Thin Solid Films, in press (1998).Google Scholar
18. Kester, D., Alley, K., Lichtenwainer, D. and Davis, R., J. Vac.Sci.Technol. A12, p.3074 (1994).Google Scholar
19. Friedmann, T., Mirkarimi, P., Medlin, D., M‘Carty, K., Klaus, E., Boehme, D., Johnsen, H., Mills, M., Ottesen, D. and Barbour, J., J. Appl. Phys. 76, p. 3,088 (1994).Google Scholar
20. Wada, T. and Yamashita, N., J. Vac. Sci. Technol. A 10, p. 515 (1992).Google Scholar
21. Tanabe, N., Hayashi, T. and Iwaki, M., Diamond Relat. Mater. 1, p. 883 (1992).Google Scholar
22. Reinke, S., Kuhr, M. and Kulisch, W., Diamond Relat. Mater. 3, p. 341 (1994).Google Scholar
23. McKenzie, D., M‘FalI, W., Sainty, W., Davis, C. and Collins, R., Diamond Relat. Mater. 2, p. 970 (1993).Google Scholar
24. Medlin, D., Friedmann, T., Mirkarimi, P., Rez, P., Mills, M. and MCCarty, K., J. Appl. Phys. 76, p. 295 (1994).Google Scholar
25. Robertson, J., Diamond Relat. Mater. 5, p. 519 (1996).Google Scholar
26. Ulrich, S., Schwan, J., Donner, W. and Ehrhardt, H., Diamond Relat. Mater. 5, p. 548 (1996).Google Scholar
27. Konyashin, I., Loeffler, J., Bill, J. and Aldinger, F., Thin Solid Films 308–309, p. 101 (1997).Google Scholar
28. Yamada, Y., Tatebayashi, Y., Tsuda, O. and Yoshida, T., Thin Solid Films 295, p. 137 (1997).Google Scholar
29. Tsuda, O., Tatebayashi, Y., Yamada-Takamura, Y. and Yoshida, T., J. Vac. Sci. Tecnol. A 15, p. 2,859 (1997).Google Scholar