Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:55:50.552Z Has data issue: false hasContentIssue false

Nmos Logic Circuits in Laser-Crystallized Silicon on Quartz

Published online by Cambridge University Press:  22 February 2011

A. Chiang
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
M. H. Zarzycki
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
W. P. Meuli
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Depletion mode as well as enhancement mode n-channel thin-film transistors (TFT's) have been fabricated in CO2 laser-crystallized silicon on fused quartz. Nearly defect-free islands were obtained by using an offset circular beam to form a tilted melt interface. The optimization of subsequent processing steps to achieve simultaneously low leakage currents and voltage thresholds appropriate for depletion-load NMOS circuits involved adjustments of ion implantation and high temperature cycles with the aid of simulation. The resultant high performance silicon-gate TFT's have led to NMOS ring oscillators with 2.5 ns delay/stage and dynamic shift registers with MHz clock rates. These are the first logic circuits fabricated in beam-crystallized silicon on bulk amorphous substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kamins, T. I., Lee, K. F., Gibbons, J. F., and Saraswat, K. C., IEEE Trans. Electron Device ED–27, 290 (1980).Google Scholar
2.Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Insulating Films on Semiconductors Schulz, M. and Pensl, G. eds. New York: (Springer-Verlag, New York 1981), p. 234.Google Scholar
3.LeComber, P. G., Spear, W. E., and Ghaith, A., Electronics Letters 15, 179 (1979).Google Scholar
4.Morozumi, S., Oguchi, K., Yazawa, S., Kodaira, T., Ohshima, H., and Mano, T., Digest of 1983 International Symposium of the Society of Information Display, p.156.Google Scholar
5.Tsaur, B-Y., Fan, John C. C., and Geis, M. W., Appl. Phys. Lett. 40, 322, (1982).Google Scholar
6.Johnson, N. M., Biegelsen, D. K., Tuan, H. C., Moyer, M. D., and Fennell, L. E., IEEE Electon Lett. EDL–3, 369 (1982).Google Scholar
7.Chiang, A., Meuli, W. P., Johnson, N. M., and Zarzycki, M. H., Proceedings of SPIE Symposium on Laser Processing of Semiconductor Devices 385, 76 (1983).Google Scholar
8.Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Laser and Electron-Beam Solid Interactions and Materials Processing Gibbons, J. F., Hess, L. D., and Sigmon, T. W., eds. (Elsevier, New York 1981), p. 463.Google Scholar
9.Fennell, L. E., Moyer, M. D., Biegelsen, D. K., Chiang, A., and Johnson, N. M., these proceedings.Google Scholar
10.Tsaur, B-Y., Geis, M. W., Fan, John C. C., Silversmith, D. J., and Mountain, R. W., Laser and Electron͵Beam Solid Interactions and Materials Processing Appleton, B. R. and Celler, G. K., eds. (Elsevier, New York 1982), p. 585.Google Scholar
11.Lam, H. W., Sobczak, Z. P., Pinizzotto, R. F., and Tasch, A. F. Jr., IEEE Trans. Electron Device ED–29, 389 (1982).Google Scholar
12.Hofker, W. K., Philips Res. Repts. Suppl. No. 8 (1975).Google Scholar
13.Le, H. P., and Lam, H. W., IEEE Electron Device Lett. EDL–3, 161 (1982).Google Scholar
14.Lee, S. N., Kjar, R. A., and Kinoshita, G., IEEE Trans. Electron Device ED–25, 971 (1978).Google Scholar
15.Herbst, D., Bosch, M. A., and Tewksbury, S. R., IEEE Electron Device Lett. EDL–4, 280 (1983).Google Scholar