Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:28:45.340Z Has data issue: false hasContentIssue false

Non Linear Optical Properties of Singlewall Carbon Nanotubes for Optical Limiting

Published online by Cambridge University Press:  10 February 2011

L. Vivien
Affiliation:
DGA/CTA/Laser, Optique et Thermooptique, Arcueil, France
E. Anglaret
Affiliation:
Université de Montpellier II, Groupe de Dynamique des Phases Condensées, Montpellier, France
D. Riehl
Affiliation:
DGA/CTA/Laser, Optique et Thermooptique, Arcueil, France
F. Hache
Affiliation:
Ecole Polytechnique, Laboratoire Optique Quantique, Palaiseau, France
Get access

Abstract

Optical limiting properties of singlewall carbon nanotubes suspended in water have been evaluated with 7 ns pulses at 532 and 1064 nm and compared with those of other materials. In order to determine the origin of optical limiting, we carried out a Z-scan experiment at 532 nm and 1064nm at different input energies. We evidenced strong nonlinear scattering and a refractive effect with a negative nonlinear index. The kinetics of nonlinear transmission, from the nanosecond to millisecond time scale, was studied using a pump-probe set-up at 1064nm. We observed cavitation bubbles growth at low input energy. The different nonlinear effects evidenced are discussed in terms of physical origin and in terms of broadband optical limiting efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Iijima, S., Nature 354, 56(1991).Google Scholar
[2] Sun, X., Yu, R. Q., Xu, G. Q., Hor, T. S. A., and Ji, W., Appl. Phys. Lett. 73, 3632(1998).Google Scholar
[3] Chen, P., Wu, X., Sun, X., Lin, J., Ji, W. and Tan, K. L., Phys. Rev. Lett. 82, 2548(1999).Google Scholar
[4] Vivien, L., Anglaret, E., Riehl, D., Bacou, F., Journet, C., Goze, C., Andrieux, M., Brunet, M., Lafonta, F., Bernier, P., Hache, F., Chem. Phys. Lett. 307, 317(1999).Google Scholar
[5] Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M. and Bernier, P., Opt. Commun., accepted for publication.Google Scholar
[6] Proceedings of the MRS, 479, Materials for optical limiting II ”(1997).Google Scholar
[7] Journet, C., Maser, W. K., Bernier, P., Loiseau, A., M. Lamy de la Chapelle, Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E., Nature 388, 756(1997).Google Scholar
[8] Vaccarini, L. et al., Synth.Metals. 103, 2492(1999).Google Scholar
[9] Rols, S., Anglaret, E., Sauvajol, J.L., Coddens, G. and Dianoux, A.J., Appl. Phys. A 69, 1 (1999).Google Scholar
[10] M. Sheik-Bahae, Said, A.A., Wei, T.H., Hagan, D. J. and Van Stryland, E. W., IEEE J. Quant.Electron. 26, 760(1990).Google Scholar
[11] Fougeanet, F. and Riehl, D., Nonlinear Optics 21, 435(1999).Google Scholar
[12] Vivien, L., Riehl, D., Anglaret, E. and Hache, F., submitted to IEEE J. Quant. Electron.Google Scholar