Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:08:51.708Z Has data issue: false hasContentIssue false

Nonlinear Stabilization Mechanisms in Amplitude Saturation During Sputter Ripple Formation on Silicon

Published online by Cambridge University Press:  01 February 2011

Jonah Erlebacher
Affiliation:
1Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD 21218, U.S.A.
Ari-David Brown
Affiliation:
1Department of Materials Science and Engineering, Johns Hopkins University Baltimore, MD 21218, U.S.A. 2Department of Physics and Astronomy, Johns Hopkins University
Get access

Abstract

Sputter rippling refers to the formation of regular surface patterns during glancing incidence energetic ion beam etching of surfaces, usually as a result of a competition between etching (from the ion beam) and capillary action (driving smoothening via surface diffusion). Many different kinds of morphologies are often observed, including ripples oriented parallel and perpendicular to the projected ion beam direction and “quantum dots” arranged in hexagonal or rectangular arrays. Theoretical analyses of ripple evolution have concentrated on the initial stages of the surface instability leading to pattern formation, and the details associated with the nonlinear mechanisms leading to amplitude saturation and pattern stabilization remain a subject of active interest. The Si(111) surface is a single component surface with isotropic surface diffusion kinetics; for these reasons, this system provides a useful probe of surface evolution without complicating effects of compositional inhomogeneities and anisotropic terrace diffusion. Our examination of the Si(111) surface indicates that step-step interactions may play an important role in the evolution of sputter ripples in this system. To argue for this conclusion, a comparison with sputter ripple evolution on Si(001) is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
2. Makeev, M., Cuerno, R., and Barabasi, A. -L., Nucl. Inst. and Meth. in Phys. Res. B 197, 185 (2002).Google Scholar
3. Sigmund, P., J. Mater. Sci. 8, 1545 (1973).Google Scholar
4. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., and Hartnagel, H. L., Science 285, 1551 (1999).Google Scholar
5. Mullins, W. W., J. Appl. Phys. 30, 1 (1959).Google Scholar
6. Herring, C., in The Physics of Powder Metallurgy, edited by Kingston, W. E. (McGraw-Hill, New York, 1951), Chap. 8.Google Scholar
7. Rusponi, S., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 78, 2795 (1997).Google Scholar
8. Rusponi, S., Constantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 81, 2735 (1998).Google Scholar
9. Rusponi, S., Constantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 81, 4184 (1998).Google Scholar
10. Margetis, D., Aziz, M.J., Stone, H., Phys. Rev. B 69, 041404 (2004).Google Scholar
11. Hannon, J., Tersoff, J., Tromp, R., Science, 295, 299 (2002).Google Scholar
12. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B., and Floro, J. A., Phys. Rev. Lett. 82, 2330 (1999).Google Scholar
13. A. –Brown, D. and Erlebacher, J., unpublished.Google Scholar
14. Shenoy, V. B., Ramasubramaniam, A., Ramanarayan, H., Tambe, D. T., Chan, W. -L., and Chason, E., Phys. Rev. Lett. 92, 256101 (2004);Google Scholar
Brown, A. -D., Chan, W. -L., Chason, E. B., Erlebacher, J., submitted to Phys. Rev. Lett.Google Scholar
15. Koponen, I., Hautala, M., and Sievanen, O. -P., Phys. Rev. Lett. 78, 2612 (1997).Google Scholar
16. Hartmann, A. K. and Kree, R., Phys. Rev. B 65, 193403 (2002).Google Scholar
17. Stepanova, M. and Dew, S. K., Appl. Phys. Lett. 84, 1374 (2004).Google Scholar
18. Jayaprakash, C., Rottman, C., and Saam, W. F., Phys. Rev. B 30, 6549 (1984).Google Scholar
19. Tromp, R. M. and Reuter, M. C., Phys. Rev. B 47, 7598 (1993).Google Scholar
20. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B., and Floro, J. A., J. Vac. Sci. Tech. A 18, 115 (2000).Google Scholar