Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T21:11:00.815Z Has data issue: false hasContentIssue false

Novel Approach for Fabrication of Single-Crystalline Insulator/Si/Insulator Nanostructures

Published online by Cambridge University Press:  01 February 2011

Andreas Fissel
Affiliation:
fissel@lfi.uni-hannover.de, University of Hannover, Information Technology Laboratory, Schneiderberg 32, Hannover, N/A, D-30167, Germany
Dirk Kuehne
Affiliation:
kuehne@lfi.uni-hannover.de, University of Hannover, Information Technology Laboratory, Schneiderberg 32, Hannover, N/A, D-30167, Germany
Eberhard Bugiel
Affiliation:
bugiel@mbe.uni-hannover.de, University of Hannover, Institute of Electronic Materials and Devices, Appelstr. 11A, Hannover, N/A, D-30167, Germany
H. Joerg Osten
Affiliation:
osten@mbe.uni-hannover.de, University of Hannover, Institute of Electronic Materials and Devices, Appelstr. 11A, Hannover, N/A, D-30167, Germany
Get access

Abstract

Double-barrier insulator/Si/insulator nanostructures on Si(111) were prepared using molecular beam epitaxy. Ultrathin single-crystalline Si buried in a single-crystalline insulator matrix with sharp interfaces was obtained by a novel approach based on an epitaxial encapsulated solid-phase epitaxy. As an example, we demonstrate the growth of Si buried in Gd2O3 and the incorporation of epitaxial Si islands into single-crystalline Gd2O3. The I-V characteristic of the obtained nanostructures exhibited negative differential resistance at low temperatures, however, with a strong memory effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hessinger, U., Leskovar, M., and Olmstead, M. A., Phys. Rev. Lett. 75, 2380 (1995).Google Scholar
2. Hunter, M. E., El-Masry, N. A., Roberts, J. C., Reed, M. J., and Bedair, S. M., Appl. Phys. Lett. 76, 1935 (2000).Google Scholar
3. Cho, M.-H., Ko, D.-H., Choi, Y. K., Lyo, I. W., Jeong, K., Kim, T. G., Song, J. H., and Whang, C. N., J. Appl. Phys. 89, 1647 (2001).Google Scholar
4. Jones, J. T., Croke, E. T., Garland, C. M., Marsh, O. J., and McGill, T. C., J. Vac. Sci. Technol. B 16, 2686 (1998).Google Scholar
5. Guha, S., Bojarczuk, N. A., and Narayanan, V., Appl. Phys. Lett. 80, 766 (2002).Google Scholar
6. Liu, J. P., Zaumseil, P., Bugiel, E., and Osten, H. J., Appl. Phys. Lett. 79, 671 (2001).Google Scholar
7. Fissel, A., Osten, H. J., and Bugiel, E., J. Vac. Sci. Technol. B 21, 1765 (2003).Google Scholar
8. Schroeder, B. R., Meng, S., Bostwick, A., and Olmstead, M. A., Appl. Phys. Lett. 77, 1289 (2000).Google Scholar
9. Wang, C. R., Müller, B. H., Bugiel, E., Wietler, T., Bierkandt, M., Hofmann, K. R., and Zaumseil, P., J. Vac. Sci. Technol. A 22, 2246 (2004).Google Scholar
10. Wang, C. R., Bierkandt, M., Paprotta, S., Wietler, T., and Hofmann, K. R., Appl. Phys. Lett. 86, 033111 (2005).Google Scholar
11. Bojarczuk, N. A., Copel, M., Guha, S., Narayanan, V., Preisler, E. J., Ross, F. M., and Shang, H., Appl. Phys. Lett. 83, 5443 (2003).Google Scholar
12. Norton, D.P., Mater. Sci. Eng. R43, 139 (2004).Google Scholar
13. Ami, T., Ispida, Y., Nagasawa, N., Machida, A., and Sizuki, M., Appl. Phys. Lett. 78, 1361 (2001); M. Yoshimoto, K. Shimozono, T. Maeda, T. Ohnishi, M. Kumagai, T. Chikyow, O. Ishiyama, M. Shinohara, and H. Koinuma, Jpn. J. Appl. Phys., Part 2 34, L688 (1995).Google Scholar
14. Inoue, T., Sakamoto, N., Horikawa, A., Takakura, H., Takahashi, K., and Ohashi, M., J. Vac. Sci. Technol. A 21, 1371 (2003).Google Scholar
15. Kitai, S., Maida, O., Kanashima, T., and Okuyama, M., Jpn. J. Appl. Phys., Part 1 42, 247 (2003).Google Scholar
16. Singh, M. P., Thakur, C.S., Shalini, K., Banerjee, S., Bhat, N., and Shivashankar, S. A., J. Appl. Phys. 96, 5631 (2004).Google Scholar
17. Watanabe, M., Iketani, Y., and Asada, M., Jpn. J. Appl. Phys., Part 2 39, L964 (2000).Google Scholar