Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:49:24.770Z Has data issue: false hasContentIssue false

Nucleation and Growth of Gold Nanoparticles Deposited by RF-Sputtering: An Experimental Study

Published online by Cambridge University Press:  21 March 2011

Davide Barreca
Affiliation:
ISTM-CNR and INSTM - Department of Chemical Sciences -, Padova University - Via Marzolo, 1 - 35131 Padova, (Italy)
Alberto Gasparotto
Affiliation:
ISTM-CNR and INSTM - Department of Chemical Sciences -, Padova University - Via Marzolo, 1 - 35131 Padova, (Italy)
Elisabetta Pierangelo
Affiliation:
Department of Chemical Sciences and INSTM -, Padova University - Via Marzolo, 1 - 35131 Padova (Italy)
Eugenio Tondello
Affiliation:
Department of Chemical Sciences and INSTM -, Padova University - Via Marzolo, 1 - 35131 Padova (Italy)
Get access

Abstract

Gold nanoparticles were deposited on SiO2, Si(100) and HOPG (Highly Oriented Pyrolitic Graphite) by RF-sputtering from Ar plasmas. Sample preparation was performed at temperatures as low as 60°C under different total pressures, RF-powers and deposition times, with particular attention to the influence of process parameters and growth surface on nanosystem properties. In this paper, the most important results regarding the compositional, structural and morphological features of the obtained specimens, are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bravo-Perez, G., Garzon, I. L., and Novaro, O., J. Mol. Struct. 493, 225 (1999).Google Scholar
[2] Bardotti, L., Prével, B., Treilleux, M., Mélinon, P., and Perez, A., Appl. Surf. Sci. 164, 52 (2000).Google Scholar
[3] Haruta, M., CATTECH 6, 102 (2002).Google Scholar
[4] Sanchez, A., Abbet, S., Heiz, U., Schneider, W. D., Häkkinen, H., Barnett, R. N., and Landman, U., J. Phys. Chem. A 103, 9573 (1999).Google Scholar
[5] Junno, T., Carlsson, S. B., Xu, H., Montelius, L., and Samuelson, L., Appl. Phys. Lett. 72, 548 (1998).Google Scholar
[6] Haruta, M., Catal. Today 36, 153 (1997).Google Scholar
[7] Wawro, A., Czajka, R., Kasuya, A., and Nishina, Y., Surf. Sci. 365, 503 (1996).Google Scholar
[8] Barreca, D., Gasparotto, A., Tondello, E., Bruno, G., and Losurdo, M., J. Appl. Phys. in press.Google Scholar
[9] Armelao, L., Bertoncello, R., Coronaro, S., and Glisenti, A., Sci. Technol. Cultural Heritage 7, 41 (1998).Google Scholar
[10] Kim, J. H., Ehrman, S. H., Mulholland, G. W., and Germer, T. A. in Optical Metrology, Roadmap for the Semiconductor, Optical, and Data Storage Industries, ed. Duparré, A. and Singh, B., (Proc. SPIE 4449, 2001), p. 281.Google Scholar
[11] Tanahashi, I., Manabe, Y., Tohda, T., Sasaki, S., and Nakamura, A. J. Appl. Phys. 79, 1244 (1996).Google Scholar
[12] Ivanco, J., Kobayashi, H., Almeida, J., Margaritondo, G., and Pincik, E., J. Appl. Phys. 90, 345 (2001).Google Scholar
[13] Petö, G., Molnár, G. L., Pàszti, Z., Geszti, O., Beck, A. and Guczi, L., Mater. Sci. Eng., C, 19, 95 (2002).Google Scholar
[14] Radnik, J., Mohr, C., and Claus, P., Phys. Chem. Chem. Phys. 5, 172 (2003).Google Scholar
[15] Suzer, S., J. Electron Spectrosc. Relat. Phenom. 114–116, 1151 (2001).Google Scholar
[16] Parmigiani, F., Scagliotti, M., Samoggia, G., and Ferraris, G. P., Thin Solid Films 125, 229 (1985).Google Scholar
[17] Muzard, S., Templier, C., Delafont, J., Girard, J. C., Thiaudiere, D., Pranevicius, L., and Galdikas, A., Surf. Coat. Technol. 100–101, 98 (1998).Google Scholar
[18] Lee, S., Hong, J., and Oh, S., Surf. Coat. Technol. 94–95, 368 (1997).Google Scholar
[19] Francis, G. M., Goldby, I. M., Kuipers, L., Issendorff, B. von, and Palmer, R. E., J. Chem. Soc., Dalton Trans. 5, 665 (1996).Google Scholar