Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:58:30.626Z Has data issue: false hasContentIssue false

On the Martensitic Transformation in V3Si

Published online by Cambridge University Press:  21 February 2011

F. Weiss
Affiliation:
E.R. 155 - C.N.R.S. - E.N.S.I.E.G. - B.P. 46 - 38402 Saint Martin D'Heres - France -
O. Demolliens
Affiliation:
E.R. 155 - C.N.R.S. - E.N.S.I.E.G. - B.P. 46 - 38402 Saint Martin D'Heres - France -
R. Madar
Affiliation:
E.R. 155 - C.N.R.S. - E.N.S.I.E.G. - B.P. 46 - 38402 Saint Martin D'Heres - France -
M. Couach
Affiliation:
E.R. 155 - C.N.R.S. - E.N.S.I.E.G. - B.P. 46 - 38402 Saint Martin D'Heres - France - SBT Lab. de Cryophysique C.E.N.G. - B.P. 85X - 38041 GRENOBLE Cédex - France -
J.P. Senateur
Affiliation:
E.R. 155 - C.N.R.S. - E.N.S.I.E.G. - B.P. 46 - 38402 Saint Martin D'Heres - France -
Get access

Abstract

We demonstrate unambiguously that V5Si3 inclusions coherent with the V3Si matrix induce at low temperature a tetragonal distorsion of V3Si.

a) Polycrystalline samples are transforming only if they are two phased V3Si - V5Si3,

b) the oriented eutectic V3Si - V5Si3 undergoes a cubic - tetragonal distortion under 60K.

c) A transforming V3Si crystal is obtained by solid state epitaxy of a V5Si3 layer on the (001) plane.

These experiments support very well our idea that the distorsion can be driven by internal stresses in the samples, related to silicon over stoichiometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Labbe, J., Friedel, J.J., J. Phys. Radium 27 (1966) 708 Google Scholar
2. Gorkov, L.P., Soy. Phys. 38 (1974) 830 Google Scholar
3. Barthel, J., Private comm. see also G.Behr Thesis Dresden 1980 Google Scholar
4. Madar, R., Senateur, J.P., Fruchart, R., J. Sol. State Chem. 28 (1979)Google Scholar
5. Patel, J.R., Batterman, B.W., J. Appl. Phys. 9 (1966) 37 Google Scholar
6. Reynaud, F., Ben Lamine, A., Private comm.Google Scholar
7. Chaddah, P., Simmons, R.O., Phys. Rev. B 1 (1983) 27 Google Scholar
8. Hastings, J.B., Shirane, G., Williamson, S.J., Phys Rev letters 43 (1979) 17 Google Scholar
9. Kochersinski, Y.A., Kulin, O.G., Shishkin, E.A., Dokl. Akat Nauk, SSSR 209 (1973) 1347 Google Scholar
10. Smith, T.F., J. Less Common Metals 21 (1975) 43 Google Scholar
11. Fukase, T., Kobayashi, T., Isino, M., Toydta, N., Muto, Y., J. Phys colloque C6 sup. 8 (1978) 406 Google Scholar
12. Milewitz, M., Williamson, S.J., J. Phys. Colloque C6 sup. 8 (1978) 408 Google Scholar
13. Bruning, H.A.C.M., Philips Res. Rep 22 (1967) 349 Google Scholar
14. Jurisch, M., Berthel, K.H., Ullrich, H.J., Phys. Status Solidi a 44 (1977) 277 Google Scholar
15. Ullrich, H.J., Schatt, N., Dabritz, S., Geist Wolker Mikrochimic Acta II (1977) 167 Google Scholar
16. Madar, R., Current topics in Mat. Science Vol.8 North Holland Pub. Comp. (1982)Google Scholar
17. Flukiger, R., J. de Phys. Colloque C4 12 (1982) 43 Google Scholar
18. Vance, E.R., Finlayson, T.R., J. Appl. Phys. 39 (1968) 1980 Google Scholar
19. Testardi, L.R., in “Physical Acoustic” vol.X (Mason, W.P. and Thurson, R.N. eds.) Acad. Press New York 1973 Google Scholar