Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T14:32:49.651Z Has data issue: false hasContentIssue false

Origin of Imprint in Ferroelectric CSD SrBi2Ta2O9 Thin Films

Published online by Cambridge University Press:  10 February 2011

M. Grossmann
Affiliation:
IWE I1, RWTH Aachen University of Technology, D-52056, Germany
O. Lohse
Affiliation:
IWE I1, RWTH Aachen University of Technology, D-52056, Germany
D. Bolten
Affiliation:
IWE I1, RWTH Aachen University of Technology, D-52056, Germany
R. Waser
Affiliation:
IWE I1, RWTH Aachen University of Technology, D-52056, Germany IFF, Research Center Juelich, Germany
W. Hartner
Affiliation:
SIEMENS AG, Semiconductor Group, Dept. HL MP E TF, Germany
G. Schindler
Affiliation:
SIEMENS AG, Semiconductor Group, Dept. HL MP E TF, Germany
N. Nagel
Affiliation:
SIEMENS AG, Semiconductor Group, Dept. HL MP E TF, Germany
C. Dehm
Affiliation:
SIEMENS AG, Semiconductor Group, Dept. HL MP E TF, Germany
Get access

Abstract

The imprint behavior of CSD processed SrBi2Ta2O9 (SBT) thin films has been investigated as a function of time, applied bias, illumination with band gap light and post anneal under different oxygen partial pressures. Applying a bias in the direction of the polarization enhances the tendency of the capacitor to exhibit a voltage shift as well as illuminating the poled capacitor with band gap light. Post anneal after top electrode deposition and patterning under slightly reducing atmospheres does not affect the imprint rate. From these experimental results, a model is presented which explains the imprint behavior of SBT films by transport of electronic charges from the electrodes into the film and subsequent trapping of these charges near the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dimos, D., Warren, W.L., and Tuttle, B.A., Mat. Res. Symp. Proc. Vol. 310 87 (1993).Google Scholar
[2] Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A. and Schwartz, R.W, J. Appl. Phys., 76 (7) 4305 (1994).Google Scholar
[3] Pike, G.E., Warren, W.L., Dimos, D. and Tuttle, B.A., Appl. Phys. Lett. 66 (4) 484 (1995).Google Scholar
[4] Lee, J., Ramesh, R., Keramidas, V.G., Warren, W.L., Pike, G. and Evans, J.T., Appl. Phys. Lett. 66 (11) 1337 (1995).Google Scholar
[5] Aggarwal, S., Dhote, A.M. and Ramesh, R., Appl. Phys. Lett. 69 (17) 2540 (1996).Google Scholar
[6] Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M., Ramesh, R. and Evans, J.T., Appl. Phys. Lett. 67 (6) 866 (1995).Google Scholar
[7] Warren, W.L., Tuttle, B.A., Dimos, D., Pike, G.E., Al-Shareef, H.N., Ramesh, R. and Evans, J.T., Jpn. J.Appl. Phys. 35 (1) No. 2b 1521 (1996).Google Scholar
[8] Warren, W. L., Al-Shareef, H., Dimos, D. and Tuttle, B.A., Appl. Phys. Lett. 68 (12) 1681 (1996).Google Scholar
[9] Evans, J. T. and Cardoza, H.E., Integrated Ferroelectrics, 10, 267 (1995).Google Scholar
[10] Suizu, R. I. and Chapman, S.P., Integrated Ferroelectrics, 16, 87 (1997).Google Scholar
[11] Al-Shareef, H.N., Dimos, D.. Warren, W.L. and Tuttle, B.A., J. Appl. Phys. 80 (8) 4573 (1996).Google Scholar
[12] Grossmann, M., Lohse, O., Bolten, D., Waser, R., Hartner, W., Schindler, G., Dehm, C. and Nagel, N., Integrated Ferroelectrics, 22, 95 (1998).Google Scholar
[13] Hase, T., Noguchi, T., Takemura, K. and Miyasaka, Y., submitted to Jpn. J. Appl. Phys. (1998)Google Scholar
[14] Carl, K. and Härdtl, K.H., Ferroelectrics, 17, 473 (1978).Google Scholar
[15] Robels, U., PhD thesis, RWTH-Aachen (1993).Google Scholar
[16] Lohkämper, R., Neumann, H. and Arit, G., J. Appl. Phys. 68 (8) 4220 (1990).Google Scholar
[17] G. Arlt and Neumann, H., Ferroelectrics, 87, 109 (1988).Google Scholar
[18] Lohse, O., Bolten, D., Grossmann, M., Waser, R., Hartner, W. and Schindler, G., Mat. Res. Symp. Proc. Vol. 493 267 (1998).Google Scholar
[19] Fridkin, V.M., Photoferroelectrics, Springer Verlag, 1979 Google Scholar
[20] Shur, V.Ya. and Rumyantsev, E.L., Integrated Ferroelectrics, 19, 319 (1997).Google Scholar