Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:39:00.113Z Has data issue: false hasContentIssue false

Peculiarity of Porous Silicon Formed in the Transition Regime

Published online by Cambridge University Press:  28 February 2011

S. Lazarouk
Affiliation:
Bielorussian State University of Informatics and Electronics, P. Brovki 6, 220600 Minsk,Belarus
V. Chumash
Affiliation:
Centre of Optoelectronics, Institute of Appl. Phys. of the Acad., Chisinau 277028, Moldova
E. Fazio
Affiliation:
Rome University, Engineering Faculty, Via Eudossiana, 18,00184 Roma, Italy
S. La Monica
Affiliation:
Rome University, Engineering Faculty, Via Eudossiana, 18,00184 Roma, Italy
G. Maiello
Affiliation:
Rome University, Engineering Faculty, Via Eudossiana, 18,00184 Roma, Italy
E. Proverbio
Affiliation:
Rome University, Engineering Faculty, Via Eudossiana, 18,00184 Roma, Italy
Get access

Abstract

Electrochemical anodization in the transition regime, between porous silicon formation region and electropolishing region, of monocrystalline silicon was investigated. Using this process bright and stable photoluminescence could be obtained on a very large range of substrate resistivities: p=12-0.005 Ωcm for p-type silicon and p = 20-0.001 Ωcm for n-type substrates.

Photoluminescence spectra, Fourier Transform IR (FTIR) absorbance and X-Ray Diffraction (XRD) measurements are reported. Investigations showed that anodic silicon suboxide was formed on the surface. The porous structure obtained in the transition regime is suggested to consist of silicon crystallites built inside an anodic oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Richter, A., Steiner, P., Kozlowski, F. and Lang, W., IEEE Electron Dev. Lett. 12, 691 (1991).Google Scholar
3 Namavar, F., Paul Maruska, H. and Kalkhoran, N.M., Appl.Phys.Lett. 60 (20), pp.25142516 (1992).Google Scholar
4 Lazarouk, S.,Bondarenko, V.,Pershukevich, P.,S.La, Monica,Maiello, G. and Ferrari, A., MRS Boston 1994, This Symposium, F22.6.Google Scholar
5 Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarlane, R. M., Phys. Rev. B, 45, 14171 (1992).Google Scholar
6 Xu, Z.Y., Gal, M., and Gross, M., Appl. Phys. Lett. 60, 1375 (1992).Google Scholar
7 Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Comm. 81, 307 (1992).Google Scholar
8 V.Petrova, Koch, Mushik, T., Kux, A., Meyer, B.K., Koch, F., Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
9 Smith, R. L. and Collins, S. D., J. Appl. Phys, p. RI (1992).Google Scholar
10 Hérino, R., Bomchil, G., Barla, K. and Bertrand, C., J. Electrochem. Soc., 134, p. 1994, (1987).Google Scholar
11 Lehmann, V. and Foll, H., J. Electrochem. Soc., 137, p. 653, (1990).Google Scholar
12 Robinson, M.B., Dillon, A.C., and George, S.M., Appl. Phys. Lett. 62, 1493 (1993).Google Scholar
13 Batstone, J.L., Tischler, M.A., and Collins, R.T., Appl. Phys. Lett. 62, 2667 (1993).Google Scholar
14 Zhang, X. G., Collins, S. D. and Smith, R. L., J. Electrochem. Soc. 136, p. 1561, (1989).Google Scholar
15 Searson, P. C., Zhang, X. G., J. Electrochem. Soc. 137, 2539, (1990).Google Scholar
16 Pai, P. G., Chao, S. S. and Takagi, Y., J. Vac. Sci. Technol. A, 4, 689 (1986).Google Scholar
17 Xiao, Y., Heben, M. J., McCullough, J. M., Tsuo, Y. S., Pankove, J. I., Deb, S. K., Appl. Phys. Lett. 62, 1152 (1993).Google Scholar
18 Bertolotti, M., Carassiti, F., Fazio, E., Ferrari, A., S.La, Monica, Lazarouk, S., Liakhou, G., Maiello, G., Proverbio, E., Schirone, L., Thin Solid Films 1994, in press.Google Scholar
19 Ito, T., Ohta, T., Hiraki, A., Jpn. J. Appl. Phys., 31, Ll,(1992).Google Scholar