Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:15:46.811Z Has data issue: false hasContentIssue false

Photoelectron Emission from the Cesiated Diamond (110) Surface

Published online by Cambridge University Press:  10 February 2011

C. A. Fox
Affiliation:
Department of Materials Science and Engineering, Stanford University
M. A. Kelly
Affiliation:
Department of Materials Science and Engineering, Stanford University
S. B. Hagstrom
Affiliation:
Department of Materials Science and Engineering, Stanford University
R. Cao
Affiliation:
Stanford Synchotron Radiation Laboratory, Stanford Linear Accelerator Center
G. Vergara
Affiliation:
Stanford Synchotron Radiation Laboratory, Stanford Linear Accelerator Center
P. Pianetta
Affiliation:
Stanford Synchotron Radiation Laboratory, Stanford Linear Accelerator Center
L. S. Pan
Affiliation:
Sandia National Laboratory, Livermore, CA
W. L. Hsu
Affiliation:
Sandia National Laboratory, Livermore, CA
Get access

Abstract

Cesiation of type IIB diamond (110) crystals was studied using a combination of ultraviolet photoemission spectroscopy, x-ray photoemission spectroscopy, and low energy electron diffraction. The diamond (110) crystal was hydrogen treated by exposure to a hydrogen microwave discharge. Although cesium was largely unreactive with the hydrogenated diamond surface, cesiation yielded a large enhancement in the secondary electron yield of the diamond surface and the negative electron affinity (NEA) condition. An increase in the downwards band bending of approximately 0.75-0.9 eV was inferred from the shift in the valence band edge following cesiation. In addition, (lx 1) LEED patterns were observed at all cesium coverages. Exposure of the cesiated diamond surface to molecular oxygen significantly reduced the NEA peak (relative to the secondary electron background); however, recovery of the NEA peak was observed when the molecular oxygen source was removed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M., Efremow, N. N., Woodhouse, J. D., McAleese, M. D., Marchywka, M., Socker, D. G., and Hochedez, J. F., IEEE Electron Dev. Lett. 12 (8), p. 456 (1991).Google Scholar
2. Xu, N. S., Tzeng, Y. and Latham, R. V., J. Phys. D 26, p. 1776 (1993); 27, p. 1988 (1994).Google Scholar
3. Okano, K. and Gleason, K. K., Electron. Lett. 31 (1), p. 74 (1995).Google Scholar
4. Hong, D. and Aslam, M., J. Vac. Sci. Technol. B 13 (2), p. 427 (1995).Google Scholar
5. Feng, Z., Brown, I. G. and IIIAger, J. W., J. Mater. Res. 10 (7), p. 1585 (1995).Google Scholar
6. Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J. Appl. Phys. 78 (4), 2707 (1995).Google Scholar
7. Himpsel, F. J., Knapp, J. A., Van Vechten, J. A. and Eastman, D. E., Phys. Rev. B 20 (2), p. 624 (1979).Google Scholar
8. van der Weide, J. and Nemanich, R.J., Phys. Rev. B. 49 (19), p. 629 (1994).Google Scholar
9. Bandis, C., Haggerty, D., Pate, B.B., Mater. Res. Soc. Proc. Spring 339, SF, CA, 1994.Google Scholar
10. Pickett, W. E., Phys. Rev. Lett. 73 (12), p. 1664 (1994).Google Scholar
11. Geis, M. W., Twichell, J. C., Macaulay, J. and Okano, K., Appl. Phys. Lett. 67 (9), p. 1328 (1995).Google Scholar
12. Pan, L. S. in Symposium DD: Diamond for Electronic Applications (Mater. Res. Soc. Proc. Fall, Boston, MA 1995), DD8.2.Google Scholar
13. Baumann, P.K. and Nemanich, R.J., Diamond and Related Materials 4, p. 802 (1995).Google Scholar
14. Shirafuji, J., Sakamoto, Y., Furukawa, A., Shigeta, H., and Sugino, T., Diamond and Related Materials 4, p. 984 (1995).Google Scholar
15. Ando, T., Inoue, S., Ishii, M., Kamo, M., Sato, T., Yamada, O., Nakano, T., J. Chem. Soc. Faraday Trans. 89(4), p. 749 (1993).Google Scholar
16. Painter, G.S., Ellis, D.E., and Lubinsky, A.R., Phys. Rev. 4, p. 3610 (1971).Google Scholar
17. Davidovits, P. and McFadden, D.L., Alkali Halide Vapors, Academic Press NY, 1979.Google Scholar