Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:16:14.583Z Has data issue: false hasContentIssue false

Piezoresistive Properties of Boron-Doped PECVD Micro- and Polycrystalline Silicon films

Published online by Cambridge University Press:  15 February 2011

M. Le Berre
Affiliation:
LPM-INSA (URA CNRS 358), 20Av. Einstein, 69 021 Villeurbanne, France
M. Lemiti
Affiliation:
LPM-INSA (URA CNRS 358), 20Av. Einstein, 69 021 Villeurbanne, France
D. Barbier
Affiliation:
LPM-INSA (URA CNRS 358), 20Av. Einstein, 69 021 Villeurbanne, France
P. Pinard
Affiliation:
LPM-INSA (URA CNRS 358), 20Av. Einstein, 69 021 Villeurbanne, France
J. Cali
Affiliation:
LEPES-CNRS, B.P. 166X, 38 000 Grenoble, France
E. Bustarret
Affiliation:
LEPES-CNRS, B.P. 166X, 38 000 Grenoble, France
J.-C. Bruyère
Affiliation:
LEPES-CNRS, B.P. 166X, 38 000 Grenoble, France
J. Sicart
Affiliation:
GES, University des Sciences et Techniques du Languedoc, 34 095 Montpellier, France
J. L. Robert
Affiliation:
GES, University des Sciences et Techniques du Languedoc, 34 095 Montpellier, France
Get access

Abstract

The electrical and piezoresistive properties of in-situ doped PECVD silicon films deposited on oxided silicon wafers have been investigated. One series of films was deposited in the so-called microcrystalline state at 450°C. The other set of samples was deposited in the amorphous state at 320°C and subjected to rapid thermal annealing. Structural properties (grain size, texture, residual stress) were evaluated experimentally through TEM and grazing angle X ray diffraction and related to the measured gauge factor. A maximum longitudinal gauge factor of 28 is measured in the case of advantageously textured microcrystalline material, the magnitude of the gauge factor decreasing sharply for randomly oriented material. For the amorphous deposited and subsequently annealed material, the longitudinal gauge factor is in the range 22–27 depending on dopant concentration. These experimental features are compared to the results of a theoretical approach of piezoresistance in polysilicon. We derive various expressions of the gauge factor according to the assumptions of either constant stress or constant strain within the aggregate. In the case of untextured films, analytical Voigt-Reuss-Hill averages for the elements of piezoresistive and elastoresistive tensors lead to greatly simplified expressions. Theoretical estimates are shown to be in reasonable agreement with the experimental measurements. This confirms the great potential of PECVD microcrystalline and polycrystalline silicon for strain gauges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Germer, W., Proc. Mater. Res. Soc. Europe Conference, 1984; Strasbourg, France, edited by P. Pinard, S. Kalbitzer (Les Ulis: Les Editions de Physique, 1984) pp. 581–586.Google Scholar
2. Germer, W., Sensors & Actuators 7, 135 (1985)Google Scholar
3. Guo, S. W., Tan, S. S., Wang, W. Y., Mater. Res. Soc. Symp. 106, 231 (1988),Google Scholar
4. Hachicha, M. A., Bruyère, J. C., Bustarret, E., Deneuville, A., Brunel, M., IPAT87 Int Conf Proc (CEP Ltd, Edinburgh UK, 1987), 360 Google Scholar
5. Berre, M. Le, Lemiti, M., Pinard, P., Bustarret, E., Grieshaber, W., Bruyère, J. C., Brunel, M. A., Mater. Res. Soc. Symp. 283, 573 (1993)Google Scholar
6. Jeanjean, P., Sicart, J., Robert, J. L., Le Berre, M., Pinard, P., Conedera, V., J. Phys. III 3, 47 (1993)Google Scholar
7. Obermeier, E., PhD thesis, University of Munich, 1983 Google Scholar
8. Evans, P. J., Evans, A. G. R., Electron. Letters 20, 999 (1984)Google Scholar
9. Schubert, D., Jenschke, W., Uhlig, T., Schmidt, F. M., Sensors and Actuators 11, 145 (1987)Google Scholar
10. Suski, J., Mosser, V., Goss, J., Sensors and Actuators A 17, 405 (1989)Google Scholar
11. Mosser, V., Suski, J., Goss, J., Obermeier, E., Sensors and Actuators A 28, 113 (1991)CrossRefGoogle Scholar
12. Le Berre, M., PhD thesis, INSA Lyon, 1993 Google Scholar
13. Anastassakis, E., Liarokapis, E., J. Appl. Phys. 62, 3346 (1987)Google Scholar
14. Voigt, W., Lehrbuch der Kristallphysik, Teubner, Verlag B. G., Leipzig, 1910. p. 962 Google Scholar
15. Kanda, Y., I.E.E.E. Trans. Elec. Dev. ED–29, 64 (1982)Google Scholar
16. Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., Cardona, M., Sol. State Comm. 8, 133 (1970)Google Scholar
17. Vepreck, S., Sarott, F. A., Rückschloß, M., J. Non-Crys. Sol. 137&138, 733 (1991)Google Scholar
18. Jeanjean, P., Sicart, J., Sellitto, P., Robert, J. L., Bustarret, E., Grieshaber, W., Cali, J., Le Berre, M., Lemiti, M., Pinard, P., Conedera, V., J. Appl. Phys., accepted for publicationGoogle Scholar
19. Audet, Y., Grieshaber, W., Bruyère, J. C., Bustarret, E., Le Berre, M., Barbier, D., Lemiti, M., Dubois, C., IPAT’91 Int. Conf. Proc. (CEP Ltd., Edinburgh UK, 1991), 190 Google Scholar
20. French, P. J., PhD thesis, Southampton, 1986 Google Scholar
21. Audet, Y. (private communication)Google Scholar
22. Lu, N. C. C., Gerzberg, L., Lu, C. Y., Meindl, J. D., I. E. E. E. Trans. Elec. Devices ED–28, 818 (1981)Google Scholar
23. Hill, R., Proc. Phys. Soc. London Sect. A 65, 349 (1952)Google Scholar