Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:11:59.677Z Has data issue: false hasContentIssue false

Polysilicon Super Thin Film Transistor Technology

Published online by Cambridge University Press:  22 February 2011

Takashi Noguchi
Affiliation:
Research & Development Div., Semiconductor Group SONY Corp., Atsugi, Kanagawa, Japan
Hisao Hayashi
Affiliation:
Research & Development Div., Semiconductor Group SONY Corp., Atsugi, Kanagawa, Japan
Takefumi Ohshima
Affiliation:
Research & Development Div., Semiconductor Group SONY Corp., Atsugi, Kanagawa, Japan
Get access

Abstract

Advanced super thin(of less than 800Å) polysilicon films with the grain size of more than lum were developed by applying the Si+implanted amorphization and subsequent annealing. With this film, TFT with superior characteristics could have been fabricated on quartz or SiO2/c-Si substrate. At the process of 600°C, field effect electron mobility as large as 60cm 2/V.s. was obtained. Furthermore, using the high temperature process of 1000°C, electron and hole mobility increased to the value of 120 and 80cm2/V.s, respectively. The values of field effect electron mobility were almost constant over a wide temperature range. The CMOS scanner was fabricated and operated faster than 5MHz. These advanced polysilicon TFT's have a great impact on large size LSI.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hayashi, H., Noguchi, T. and Ohshima, T., Jpn.J.Appl.Phys.Lett. 23, L819 (1985).Google Scholar
2. Noguchi, T., Hayashi, H. and Ohshima, T., Jpn.J.Appl.Phys.Lett. 24, L434 (1985).Google Scholar
3. Noguchi, T., Hayashi, H. and Ohshima, T., Jpn.J.Appl.Phys.Lett. 25, L121 (1986).CrossRefGoogle Scholar
4. Seager, C.H. and Ginley, G.H., Appl.Phys.Lett. 34, 337 (1979).CrossRefGoogle Scholar
5. Kamins, T.I. and Marcoux, , IEEE Ele.Dev.Lett. 159 (1980).Google Scholar
6. Kwizera, P. and Reif, R., Appl.Phys.Lett. 46, 5247 (1975).Google Scholar
7. Iverson, R.B. and Reif, R., J.Appl.Phys. 57, 5169 (1985).Google Scholar
8. Noguchi, T., Hayashi, H. and Ohshima, T., J.Electrochem.Soc. 134, 1771 (1987).CrossRefGoogle Scholar
9. Ohshima, T., Noguchi, T. and Hayashi, H., Jpn.J.Appl.Phys.Lett. 25, L291 (1986).Google Scholar
10. Hayashi, H., Noguchi, T., Ohshima, T., Negishi, M. and Hayashi, Y., SSDM Tokyo, 549 (1986).Google Scholar
11. Kuhl, Ch., Schlotter, H. and Scwidefsky, F., J.Electrochem.Soc. 121, 1496 (1974).Google Scholar
12. Ohshima, T., Negishi, M., Hisao, H., Noguchi, T. and Mizumura, A., IEDM Los Angeles 196 (1986).Google Scholar
13. Hayashi, H., Negishi, M., Ohshima, T., Noguchi, T., Hayashi, Y., Maekawa, T. and Matsushita, T., SSDM Tokyo, 59 (1987).Google Scholar
14. John Seto, Y.W., J.Appl.Phy. 46, 5247 (1975).Google Scholar
15. Hayashi, Y., Hayashi, H., Yagino, M., Negishi, M. and Matsushita, T., ISSCC San Francisco, (1987) To be published.Google Scholar
16. Maekawa, T., Ohshima, T., Negishi, M., Hayashi, H. and Matsushita, T., IEDM Washiton D.C., (1987) To be published.Google Scholar