Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:54:45.790Z Has data issue: false hasContentIssue false

The Precipitation of Nickel and Copper at Grain Boundaries in Silicon

Published online by Cambridge University Press:  26 February 2011

H. J. Möller
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
U. Jendrich
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
L. Huang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
A. Foitzik
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

The precipitation of copper and nickel at grain boundaries in cast polycrystalline silicon is investigated. The metals are diffused into the specimens from a surface source between 800 – 1000 °C and the precipitation after cooling is studied by TEM. Copper precipitates in form of colonies containing hundreds of particles with a size between 5–6 nm. In the grain boundary they nucleate preferentially at dislocations and steps. The distribution and size of the precipitates depend on the cooling rate after the diffusion. Nickel forms only few large (micrometer size) plate-like or three dimensional precipitates at and near grain boundaries. The main features of the results and the differences between the two elements are explained under the assumption that the precipitation requires the transport of native point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kazmerski, L.L. and Russell, P.E.: J. de Phys. C1, 43, 171 (1983)Google Scholar
2. Aucoutourier, M., Broniatowski, A., Chari, A., Maurice, J.L., in Polycystalline Semiconductors, ed. by Möller, H.J. et al. , Springer Proc. in Physics 35, 64 (1989)CrossRefGoogle Scholar
3. Maurice, J.L. and Colliex, C., Appl. Phys. Lett. 55, 241 (1989)CrossRefGoogle Scholar
4. Broniatowski, A., Phys. rev. Lett. 62, 3074 (1989)CrossRefGoogle Scholar
5. Weber, E., Appl. Phys. A 30, 1 (1983)CrossRefGoogle Scholar
6. Jendrich, U. and Möller, H.J., MRS Symposia Proc. Vol. 163, 579 (1990)CrossRefGoogle Scholar
7. Jendrich, U. and Möller, H.J., J. de Physique 51 – C1, 197 (1990)Google Scholar
8. Cerva, H. and Wendt, H., Mater. Res. Soc. Proc. 99, 99 (1988)Google Scholar
9. Wendt, H., Cerva, H., Lehmann, V. and Palmer, W., J. Appl. Phys. 65, 2402 (1989)CrossRefGoogle Scholar
10. Das, G.: J. Appl. Phys. 44, p. 4459, 1973 CrossRefGoogle Scholar
11. Nes, E. and Washburn, J.: J. Appl. Phys. 42, p. 3562, 1971 CrossRefGoogle Scholar
12. Nes, E. and Washburn, J.: J. Appl. Phys. 44, p. 3682, 1973 CrossRefGoogle Scholar
13. Nes, E. and Solberg, J. K.: J. Appl. Phys. 44, p. 486, 1973 CrossRefGoogle Scholar
14. Ryoo, K., Drosd, R., and Wood, W.: J. Appl. Phys. 63, 4440, 1988 CrossRefGoogle Scholar
15. Solberg, J.K. and Nes, E.: Phil. Mag. A 37, 465, 1978 CrossRefGoogle Scholar
16. Seibt, M., Proc. 16th Intern. Conf. on Defects in Semiconductors 1990, in pressGoogle Scholar
17. Seibt, M. and Graff, K.: Mat. Res. Soc. Proc. 104, 215 (1988)CrossRefGoogle Scholar
18. Seibt, M. and Graff, K.: J. Appl. Phys. 63, 4444, 1988 CrossRefGoogle Scholar
19. Seibt, M. and Schröter, W., Phil. Mag. A 59, 337 (1989)CrossRefGoogle Scholar
20. Solberg, J.K.: Acta Cryst. 34, 684, 1978 CrossRefGoogle Scholar
21. Mariotton, B.P. and Goesele, U., J. Appl. Phys. 63, 4661 (1988)CrossRefGoogle Scholar