Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T22:11:28.918Z Has data issue: false hasContentIssue false

Preferential Site Precipitation and Subcell Stability in AA6061 Sandwich Cores

Published online by Cambridge University Press:  26 February 2011

B. A. Bouwhuis
Affiliation:
bouwhui@ecf.utoronto.ca, University of Toronto, Materials Science and Engineering, 184 College St., Room 140, Toronto, M5S3E4, Canada, (416) 978-1584, (416) 978-4155
G. D. Hibbard
Affiliation:
glenn.hibbard@utoronto.ca, University of Toronto, Department of Materials Science and Engineering, Toronto, M5S3E4, Canada
Get access

Abstract

Periodic cellular metal (PCM) sandwich cores can be considered hybrids of the solid and gas type. These can be designed at both the architectural and microstructural levels. PCM cores with 95% open porosity have been constructed from perforated 6061 aluminium alloy (AA6061) sheets using a perforation-stretching method. This method places planar, periodically-perforated sheet metal in an alternating-pin jig. The pins apply force out-of-plane, plastically deforming the sheet metal into a truss-like array of struts (i.e. metal supports) and nodal peaks (i.e. strut intersections). The result is a non-uniform work-hardened profile exhibiting large deformation at the nodes and small deformation at the struts.

For identical PCM architectures, this study looks at the interaction of microstructural strengthening mechanisms and the resultant performance of PCM truss cores. Beginning with fabrication, work-hardening induced a subcell network of dislocation tangles within the AA6061 matrix. Following this stage, a variety of microstructures were created through recovery, recrystallization and precipitation mechanisms. Microhardness measurements and electron back-scattered diffraction (EBSD) characterization were employed through truss core cross-sections in order to study the microstructural gradients of subcell size as well as interaction between subcells and precipitates in the truss cores. To determine the effect of microstructure on mechanical performance, PCM cores were compressed to study deformation and collapse mechanisms.

The present data can be used to illustrate engineering at the architectural and microstructural levels to achieve a range of mechanical properties in a hybrid sandwich core.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ashby, M. F., Philos. Mag. 85, 3235 (2005).Google Scholar
2. Wadley, H. N. G., Philos. Trans. R. Soc. A 364, 31 (2006).Google Scholar
3. Wadley, H. N. G., Fleck, N. A. and Evans, A. G., Compos. Sci. Technol. 63, 2331 (2003).Google Scholar
4. Benedyk, J. C., Light Metal Age 26, 10 (1968).Google Scholar
5. Bouwhuis, B. A. and Hibbard, G. D., in Materials in Extreme Environments, edited by Mailhiot, C., Saganti, P.B., and Ila, D., (Mater. Res. Soc. Symp. Proc. 929E, Warrendale, PA, 2006) paper no. 0929-II06–05.Google Scholar
6. Deshpande, V. S. and Fleck, N. A., Int. J. Solids Struct. 38, 6275 (2001).Google Scholar
7. Simone, A. E. and Gibson, L. J., Acta Mater. 46, 3109 (1998).Google Scholar
8. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. and Wadley, H. N. G., Metal Foams: A Design Guide (Butterworth-Heinemann, Boston, 2000) p. 372.Google Scholar
9. Kooistra, G. W., Deshpande, V. S. and Wadley, H. N. G., Acta Mater. 52, 4229 (2004).Google Scholar
10. Bouwhuis, B. A. and Hibbard, G. D., Metall. Mater. Trans. B, in press (2006).Google Scholar
11. Deshpande, V. S., Fleck, N. A. and Ashby, M. F., J. Mech. Phys. Solids 49, 1747 (2001).Google Scholar
12. Bouwhuis, B. A. and Hibbard, G. D., in Processing and Fabrication of Advanced Materials XV, edited by Srivatsan, T.S. and Varin, R.A. (ASM International, Materials Park, 2006), p. 87101.Google Scholar
13. Gourdet, S. and Montheillet, F., Mater. Sci. Eng. A283, 274 (2000).10.1016/S0921-5093(00)00733-4Google Scholar
14. Mishin, O. V., Jensen, D. Juul, and Hansen, N., Mater. Sci. Eng. A342, 320 (2003).Google Scholar
15. Bowen, J. R., Mishin, O. V., Prangnell, P. B., and Jensen, D. Juul, Scripta Mater. 47, 289 (2002).Google Scholar
16. Shankar, M. R., Chandrasekar, S., Compton, W. D., and King, A. H., Mater. Sci. Eng. A410–411, 364 (2005).Google Scholar
17. Cherukuri, B. and Srinivasan, R., Mater. Manuf. Processes. 21, 519 (2006).Google Scholar
18. Nock, J. A., Iron Age 159, 48 (1947).Google Scholar
19. Harrington, R. H., Trans. A. I. M. E. 124, 172 (1937).Google Scholar
20. Shteinberg, M. M., Smirnov, M. A., Kareva, N. T., Ananin, S. N., Goldbukht, G. E., and Tolstov, A. M., Metalloved. Term. Obrab. Met. 8, 26 (1973) [Met. Sci. Heat Treat. 15, 665 (1973)].Google Scholar
21. Ber, L. B., Vaynblat, Yu. M., Davydov, V. G., Khayurov, S. S., and Shcheglova, N. M., Fiz. Met. Metalloved. 36, 583 (1973) [Phys. Met. Metallogr. 36, 120 (1974)].Google Scholar
22. Mondolfo, L. F., Aluminum alloys: Structure and Properties (Butterworths, Toronto, 1976) p. 796.Google Scholar