Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T01:20:56.382Z Has data issue: false hasContentIssue false

Preparation and Characterization of Bi2VO5.5 Films by MOD Method

Published online by Cambridge University Press:  10 February 2011

E Tokumitsu
Affiliation:
Precision & Intelligence Lab., Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, JAPAN
Y. Takahashi
Affiliation:
Precision & Intelligence Lab., Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, JAPAN
H. Ishiwara
Affiliation:
Frontier Collaborative Research Center, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, JAPAN
Get access

Abstract

We report the preparation and characterization of Bi2VO5.5(BVO) films grown on SrTiO3, Pt/SiO2/Si, and n-Si(100) substrates by the MOD technique. Since a dielectric constant of BVO is much lower than that of PZT or SBT, BVO is one of the promising candidates for metal-ferroelectric-semiconductor field-effect transistors (MFSFETs). It is found by X-ray diffraction (XRD) measurements that highly (001)-oriented BVO films were obtained and that the crystalline quality was improved with increasing the annealing temperature. The full width at half maximum (FWHM) in the X-ray rocking curve measurements for BVO films on SrTiO3, Pt/SiO2/Si, and n-Si(100) substrates are 0.60, 1.00, and 5.10, respectively. Electrical properties were measured with Pt top electrodes and the typical relative dielectric constant determined by the C-V characteristics is 60-80.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishiwara, H., Shimamura, T. and Tokumitsu, E., Jpn. J. Appl. Phys. 36, 1655 (1997)Google Scholar
2. Ishiwara, H., Jpn. J. Appl. Phys., 32 (1993) 442 Google Scholar
3. Brown, W. L., US Patent 2791759 (1957)Google Scholar
4. Moll, J. L. and Tarui, Y., IEEE Trans. Electron Devices ED–10, 333 (1963)Google Scholar
5. Tokumitsu, E., Itani, K., Moon, B. K., and Ishiwara, H. in Ferroelectric Thin Films IV, edited by Tuttle, B. A., Desu, S. B., Ramesh, R., Shiosaki, T. (Mat. Res. Soc. Symp. Proc. 361, 1995) pp. 427432.Google Scholar
6. Shichi, Y., Tanimoto, S., Goto, T., Kuroiwa, K., Tarui, Y., Jpn. J. Appl. Phys. 33, 5172 (1994).Google Scholar
7. Nakao, Y., Nakamura, T., Kamisawa, A., and Takasu, H., Integrated Ferroelectrics 6, 23 (1995).Google Scholar
8. Hirai, T., Fujisaki, Y., Nagashima, K., Koike, H., and Tarui, Y., Jpn. J. Appl. Phys. 36, 5908 (1997).Google Scholar
9. Lee, H. N., Kim, Y. T., Lee, C. W., Lim, M. H., and Kalkur, T. S., Extended Abstracts of 1997 Int. Conf. on Solid State Devices and Materials, Hamamatsu, 1997, pp.382383.Google Scholar
10. Tokumitsu, E., Nakamura, R., Ishiwara, H., IEEE Electron Device Letters 18, 160 (1997).Google Scholar
11. Prasad, K.V.R., Varma, K.B.R., Raju, A.R., Satyalakshmi, K.M., Mallya, R.M., and Hegde, M.S., Appl. Phys. Lett. 63 1898 (1993)Google Scholar
12. Satyalakshmi, K.M., Varma, K.B.R., and Hegde, M.S., J. Appl. Phys. 78 1160 (1995)Google Scholar
13. Tabata, H., Yanagita, T., Hamada, M. and Kawai, T., in Ferroelectric Thin Films VI, edited by Treece, R. E., Jones, R. E., Foster, C. M., Desu, S. B., Yoo, I. K. (Mat. Res. Soc. Symp. Proc. 493, 1998) pp. 105110.Google Scholar