Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:13:22.655Z Has data issue: false hasContentIssue false

Processing and Optical Properties of YAG- and Rare-Earth-Aluminum Oxide-composition Glass Fibers

Published online by Cambridge University Press:  14 March 2011

Richard Weber
Affiliation:
Containerless Research, Inc., Evanston, IL 60201, U.S.A.
Johan Abadie
Affiliation:
Containerless Research, Inc., Evanston, IL 60201, U.S.A.
Thomas Key
Affiliation:
Containerless Research, Inc., Evanston, IL 60201, U.S.A.
April Hixson
Affiliation:
Containerless Research, Inc., Evanston, IL 60201, U.S.A.
Paul Nordine
Affiliation:
Containerless Research, Inc., Evanston, IL 60201, U.S.A.
Yannick Feillens
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Hiroshi Noguchi
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Jonathan Kurz
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Brandon Wood
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Michel Digonnet
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Martin Fejer
Affiliation:
Ginzton Laboratory, Stanford University, Stanford, CA 94304, U.S.A.
Get access

Abstract

Rare-earth-aluminum oxide-composition glass fibers 5-50 μm in diameter and containing up to 50 mole % rare-earth oxide were drawn from undercooled liquids 550-650 K below the equilibrium melting point. The fibers have tensile strengths of ∼6 GPa, glass transition temperatures of ∼1150 K, and infrared transmission up to ∼5500 nm. The optical properties of erbium-doped fibers containing up to 12.5 mole % Er2O3 were investigated. The 1/e lifetime of the 4I13/2 excited state was 0.8-7 ms, decreasing with increasing Er concentration. Amplified spontaneous emission measurements indicate extremely broadband spectra, up to 135 nm (3-dB width) in 0.5 mole % fibers. Although this result is encouraging, the gain bandwidth, which has not been measured, is likely narrower. Glass fibers were crystallized by heat treatment under tension at temperatures of 1300-1900 K to form flexible, creep resistant polycrystalline monofilaments with tensile strengths up to 2.4 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becker, P.C., Olsson, N.A., and Simpson, J.R., in Erbium-Doped Fiber Amplifiers, (Academic Press, San Diego, 1999).Google Scholar
2. Advanced Solid-State Lasers, edited by Fejer, M.M., Injeyan, H., and Keller, U., (Opt. Soc. America, Washington, DC, 1999).Google Scholar
3. Loewenstein, K.L., The Manufacturing Technology of Continuous Glass Fibres, 3rd ed., (Elsevier, Amsterdam, 1993).Google Scholar
4. Weber, J.K.R., Abadie, J.G., Hixson, A.D., Key, T.S., Nordine, P.C., Kriven, W.M., Johnson, B.R., Sehiroglu, A., and Zhu, D., Advanced Oxide Fibers and Coatings for High Temperature Composite Materials Applications, Final Report, Contract F49620-98-C-0050, Oct., 2000.Google Scholar
5. Johnson, B.R., and Kriven, W.M., J. Mat. Res., 16, 17951805 (2001).Google Scholar
6. Vogel, W., Chemistry of Glass, translated by Kreidl, N., (American Ceramic Society, Columbus, OH, 1985).Google Scholar
7. Miniscalco, W.J., in Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed., (Marcel Dekker, Inc., New York, 2001) p. 17112.Google Scholar
8. Hehlen, M.P., Cockcroft, N.J., Gosnell, T.R., Bruce, A.J., Nykolak, G., and Shnulovich, J., Phys. Rev. B, 56, 9302–18, (1997).Google Scholar
9. Baesso, M.L., Bento, A.C., Miranda, L.C.M., DeSouza, D.F., Sampaio, J.A., and L.A. Nunues, O., J. Non-cryst. Solids, 276, 818 (2000).Google Scholar
10. Ceramic Fibers and Coatings -Advanced Materials for the Twenty First Century, National Materials Advisory Board, pub. NMAB-494, (National Academy Press, Washington, DC, 1998).Google Scholar
11. Pollock, J.T.A., J. Mat. Sci., 7, 787–92 (1972).Google Scholar
12 Haggerty, J.S., et al. “Apparatus for Forming Refractory Fibers” U.S. Patent No. 4,012,213, 15 March, 1977.Google Scholar
13. Sayir, A., and Farmer, S.C., Mater. Res. Soc. Proc. 365, 1120 (1995).Google Scholar
14. Fejer, M. M., Nightingale, J. L., Magel, G.A., and Byer, R. L., SPIE 460, 2632, (1984).Google Scholar
15. Veitch, C.D., J. Mater. Sci., 26, 6527–32 (1991).Google Scholar
16. Weber, J.K.R., Felten, J.J., Cho, B., and Nordine, P.C., Nature, 393, 769–71 (1998).Google Scholar
17. Weber, J.K.R., Abadie, J.G., Hixson, A. D., Nordine, P. C., Kriven, W. M., and Johnson, B. R., J. Eur. Ceram. Soc., 19, 2543–50, (1999).Google Scholar
18. Corman, G.S., Ceram. Eng. Sci. Proc., 12, 1745–66 (1991).Google Scholar
19. Weber, J.K.R., Felten, J.J., and Nordine, P.C., Rev. Sci. Instrum., 67, 522–24 (1996).Google Scholar
20. Weber, J.K.R., Hixson, A.D., Abadie, J.G., Nordine, P.C., and Jerman, G.A., J. Am. Ceram. Soc., 83, 1868–72, (2000).Google Scholar
21. Weber, J.K.R., and Nordine, P.C., Microgravity Sci. and Tech., VII, 279–82 (1995).Google Scholar
22. Weber, J.K.R., Abadie, J.G., Key, T.S., Hiera, K., Nordine, P.C., Waynant, R.W., and Ilev, I.K., J. Am. Ceram. Soc., submitted.Google Scholar
23. Digonnet, M.J.F., in Rare-Earth-Doped Fiber Lasers and Amplifiers, 1st ed., (Marcel Dekker, Inc., New York, 1993), p. 181236.Google Scholar
24. Morcher, G.N. and DiCarlo, J.A., J. Am. Ceram. Soc., 75, 136–40 (1992).Google Scholar
25. Shi, W.Q., Bass, M., and Birnbaum, M., J. Opt. Soc. Am. B, 7, 1456–62, (1990).Google Scholar
26. Hehlen, M.P., Cockroft, N.J., Gosnell, T.R., Bruce, A.J., Nykolak, G., and Shmulovich, J., Opt. Lett., 22, 772–74, (1997).Google Scholar