Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T07:09:09.090Z Has data issue: false hasContentIssue false

Product consistency test of fully radioactive high-sodium content borosilicate glass K-26

Published online by Cambridge University Press:  17 March 2011

N.V. Ojovan
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
I.V. Startceva
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
A.S. Barinov
Affiliation:
Scientific and Industrial Association “Radon”, Moscow, Russia
M.I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, UK
D.H. Bacon
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
B.P. McGrail
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
J.D. Vienna
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington, US
Get access

Abstract

Chemical durability of fully radioactive, high-sodium borosilicate glass K-26 was evaluated using the product consistency test PCT-A. Examination revealed normalised leaching rates as high as 5.93•10−2, 4.05•10−2 and 2.93•10−2 g/m2•day for sodium, boron and silicon respectively. Data on chemical durability of glass K-26 are consistent with similar composition glasses. These are of particular interest for performance assessment models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McGrail, B.P., Bacon, D.H., Meyer, P.D., Ojovan, M.I., Strachan, D.M., Ojovan, N.V., Startceva, I.V.. Mat. Res. Soc. Symp. Proc. 757, II2.1.113 (2003).Google Scholar
2. Bacon, D.H., Ojovan, M.I. , M.I., McGrail, B.P., Ojovan, N.V., Startceva, I.V.. Proc. ICEM '03, Oxford, England, 4509.pdf. (2003).Google Scholar
3. Bibler, N.E.. Advances in Ceramics, 20, ACS, Westerville, OH, 619626 (1986).Google Scholar
4. Iseghem, P. Van ed. J. Nucl. Mat., 298, N. 1, 2 (2001).Google Scholar
5.ASTM Standard C 1285-02 (2002).Google Scholar
6.Long term tests of low and intermediate level waste packages under field and experimental repository conditions. SIA ‘Radon’, Report Res. Contr. N 9744/R0, IAEA, (1998).Google Scholar
7. Ojovan, N.V., Startceva, I. V., Barinov, A.S., Mokhov, A.V., Ojovan, M.I., Moebus, G.. Mat. Res. Soc. Symp. Proc. 807, 139144 (2004)...Google Scholar
8. Vienna, J.D., Jiricka, A., Hrma, P., Smith, D.E.. Lorier, T.H., Schuktz, R.L., Reamer, I.A.. Hanford immobilized LAW product acceptance testing: tanks focus area results. PNNL-13744 (2001).Google Scholar
9. Ojovan, M.I., Ojovan, N.V., Startceva, I.V., Chuikova, G.N., Barinov, A.S.. Proc. WM'01, 43c-23.pdf (2001).Google Scholar
10. Ojovan, M.I., Burcl, R.. Proc. 2003 EPRI Int. Conf. in Conj. with IAEA, 16-18.07.03, New Orleans, LA, USA, EPRI-S08-P7.pdf (2003).Google Scholar
11. Ojovan, M.I., Lee, W.E.. Mat. Res. Soc. Symp. Proc., 792, R2.5.16 (2004).Google Scholar