Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T04:10:56.852Z Has data issue: false hasContentIssue false

The Properties of Dual Acceptor Delta-Doped ZnO Thin Films

Published online by Cambridge University Press:  15 July 2015

T N. Oder
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555.
R.C. Gade
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555.
C. Merlo
Affiliation:
Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555.
Get access

Abstract

We report the investigation of ZnO thin films delta-doped with lithium and phosphorus introduced simultaneously. The films were deposited from high purity ceramic targets of ZnO and Li3PO4 on c-plane sapphire substrates by RF magnetron sputtering. An undoped ZnO film with a low background electron concentration was used as the buffer layer on the sapphire substrate. The doped films were prepared by carrying simultaneous sputtering from the ZnO and Li3PO4 ceramic targets. For uniform doped films, the simultaneous deposition from the ZnO and Li3PO4 was uninterrupted. For the delta-doped films on the other hand, deposition from the ZnO target was uninterrupted while that from the Li3PO4 was interrupted periodically using a shutter. Post-deposition annealing was carried using a rapid thermal processor in O2 at 900 oC for 3 min. Results obtained from photoluminescence spectroscopy measurements at 12 K revealed acceptor-related luminescence peaks at 3.35 eV, possibly due to the transition from exciton bound to a neutral acceptor. The x-ray diffraction 2θ-scans showed a single peak at about 34.4o. Hall effect measurements revealed p-type conductivities with an average Hall concentrations of 3.8 x 1013 cm-3 in uniform doped samples and 1.5 x 1016 cm-3 in delta doped samples. However, in some cases the Hall coefficients had both positive and negative values, making the determination of the carrier type inconclusive. The fluctuation in the carrier type could be due to the lateral inhomogeneity in the hole concentration caused by signal noise impacting the small Hall voltages in the measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666CrossRefGoogle Scholar
Duan, X. Y., Yao, R. H. and Zhao, Y. J.. Appl. Phys. A 91, 467 (2008).CrossRefGoogle Scholar
Janotti, A. and Van deWalle, C. G., Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
Lyons, J. L., Janotti, A., and Van de Walle, C. G., Appl. Phys. Lett. 95, 252105 (2009).CrossRefGoogle Scholar
Reynolds, J. G., Reynolds, C. L., Mohanta, A., Muth, J. F., Rowe, J. E., Everitt, H. O. and Aspnes, D. E., Appl. Phys. Lett. 102, 152114 (2013).CrossRefGoogle Scholar
Look, D.C., Renlund, G.M., Burgener, R.H. II, and Sizelove, J.R., Appl. Phys. Lett. 85, 5269 (2004).CrossRefGoogle Scholar
Limpinumnong, S., Smith, M.F., and Zhang, S.B., Appl. Phys. Lett. 89, 222113 (2006).CrossRefGoogle Scholar
Lee, W.J., Kang, J., and Chang, K.J., Phys. Rev. B 73, 024117 (2006).CrossRefGoogle Scholar
Lee, E.-C. and Chang, K.J., Phys. B 376377, 707 (2006).CrossRefGoogle Scholar
McCluskey, M.D. and Jokela, S.J., J. Appl. Phys. 106, 071101 (2009).CrossRefGoogle Scholar
Avrutin, V., Silversmith, D.J., and Morkoc, H.¸, Proc. IEEE Inst. Electr. Electron. Eng. 98, 1269 (2010).CrossRefGoogle Scholar
Vlasenko, L.S. and Watkins, G.D., Phys. Rev. B 72, 035203 (2005).CrossRefGoogle Scholar
Yamamoto, T., Phys. Status Solidi A 193, 423 (2002).3.0.CO;2-X>CrossRefGoogle Scholar
Tian, R.Y. and Zhao, Y.J., J. Appl. Phys. 106, 043707 (2009).CrossRefGoogle Scholar
Lu, J.G., Zhang, Y.Z., Ye, Z.Z., Zhu, L.P., Wang, L., Zhao, B.H. and Liang, Q.L., Appl. Phys. Lett. 88, 222114 (2006).CrossRefGoogle Scholar
Oder, T. N., Smith, A., Freeman, M., McMaster, M., Cai, B. and Nakarmi, M. L., J. Electron. Mater. 43(5) 1370–78 (2014).CrossRefGoogle Scholar
Schubert, E.F., J. Vacuum Sci. Technol A 8(3) 29802996 (1990).CrossRefGoogle Scholar
Harris, J.J., Journal of materials science: materials in electronics 4, 93105(1993).Google Scholar
Nakarmi, M. L., Kim, K. H., Li, J., Lin, J. Y., and Jiang, H. X., Phys. Lett 82 3041 (2003).Google Scholar
Jung, H. D., Song, C. D., Wang, S. Q., Arai, K., Wu, Y. H., Zhu, Z., and Yao, T., Appl. Phys. Lett. 70, 1143 (1997).CrossRefGoogle Scholar
Oder, T.N., McMaster, M., Smith, A., Velpukonda, N., and Sternagle, D., Mater. Res. Soc. Proc. 1394, mrsf111394m1322 (2012).Google Scholar
Oder, T.N., Smith, A., Freeman, M., McMaster, M., Cai, B., and Nakarmi, M.L., MRS Proc. 1494, mrsf12-1494-z04-48 (2013).Google Scholar
Lee, Y. C., Hu, S. Y., Water, W., Tiong, K. K., Feng, Z. C., Chen, Y. T., Huang, J. C., Lee, J. W., Huang, C. C., Shen, J. L., Cheng, M. H.; J. Limin. 129, 148 (2009).CrossRefGoogle Scholar
Sagar, P., Shishodia, P. K., Mehra, R. M., Okada, H., Wakahara, A., Yoshida, A., J. Lumin. 126, 800 (2007).CrossRefGoogle Scholar
Cui, M. L., Wu, X. M., Zhuge, L. J., Meng, Y. D., Vacuum 81, 899 (2007).CrossRefGoogle Scholar
Qin, X., Wang, J., Xie, J., Li, F., Wen, L. and Wang, X., Bull. Mater. Sci. 31(4), 681686 (2008).Google Scholar
Van de Walle, C. G., Phys. Status Solidi B 235, 89 (2003).CrossRefGoogle Scholar
Gutowski, J., Presser, N., and Broser, I, Phys. Rev. B 38, 9746 (1988).CrossRefGoogle Scholar
Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar