Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T03:19:49.628Z Has data issue: false hasContentIssue false

Properties of RF Sputtered ZnTe:N films for Back Contact to CdS/CdTe Solar Cells

Published online by Cambridge University Press:  21 March 2011

Jennifer Drayton
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
A. Gupta
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
K. Makhratchev
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
K. J. Price
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
R. G. Bohn
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
A.D. Compaan
Affiliation:
Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio, 43606
Get access

Abstract

Most of the low resistance back contacts formed on high efficiency CdS/CdTe solar cells involve copper either in elemental form (such as Cu/Au back contacts) or as dopant in other material (such as Cu-doped ZnTe). But copper is also suspected to be a cause of degradation of devices in long-term stability tests due to its high diffusion coefficient in polycrystalline CdTe. In this paper, we present results on the development of nitrogen-doped ZnTe back contacts for CdS/CdTe solar cells. Reproducible N-doped p-ZnTe films were prepared using reactive RF magnetron sputtering with Ar/N2 gas mixtures. The conductivity of the doped ZnTe films was more than five orders of magnitude higher than that of intrinsic films. We find that annealing in air can further increase the conductivity. Efficiencies near 10% have been achieved with a ZnTe:N/Ni back contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyers, P.V., 7th European Photovoltaics Conference, October, 1986.Google Scholar
2. Gessert, T.A., Asher, S.E., Naraynswamy, C., Rose, D., Proc. 28th IEEE Photovoltaics Specialists Conference, Sept. 15-22, 2000, Anchorage. (in press); C. Naraynswamy, T.A. Gessert, and S.E. Asher, NCPV Photovoltaics Program Review, ed. by M. Al-Jassim, J.P. Thornton, and J.M. Gee (AIP Conference Proceedings CP462), 1999. p. 248. H5.9.5 Incident sunlight glass CdS CdTe ZnTe:N Ni SnO2:FGoogle Scholar
3. Fan, Y., Han, J., He, L., Saraie, J., Gunshor, R.L., Hagerott, M., Jeon, H., Nurmikko, A.V., Hua, G.C., and Otsuka, N., Appl. Phys. Lett. 61, 3160 (1992); S. Kajima, H. Okuyama, Y. Sanaka, T. Kobayashi, S. Tomiya, and A. Ishibashi, Appl. Phys. Lett. 73, 235 (1998).Google Scholar
4. Baron, T., Saminadyar, K., and Magnea, N., Appl. Phys. Lett. 83, 1354 (1998).Google Scholar
5. Bohn, R.G., Tabory, C.N., Deak, C., Shao, M., Compaan, A.D., and Reiter, N., Proc. 24th IEEE Photovoltaic Specialists Conference, 1994, pp. 354356 (1995).Google Scholar
6. Ma, Xianda, MS Thesis, May, 1999 (unpublished).Google Scholar
7. Compaan, A.D., Deng, X., Bohn, R.G., “High Efficiency Thin Film CdTe and a-Si Based Solar Cells”, Annual Technical Report, 1999. NREL Contract No. ZAF-8-17619-14.Google Scholar
8. Makhratchev, K., Price, K.J., Ma, X., Simmons, D.A., Drayton, J., Ludwig, K., Gupta, A., Bohn, R.G., Compaan, A.D., Proc. 28th IEEE Photovoltaics Specialists Conference, Sept. 15-22, 2000, Anchorage (in press).Google Scholar
9. Ingerly, D.B., Chen, Y., William, R.S., Takeuchi, T., and Chang, Y.A., Appl. Phys. Lett. 77, 382 (2000) and references therin.Google Scholar
10. Haase, H., Aiu, J., DePuydt, J.M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
11. Shao, M., Fischer, A., Grecu, D., Jayamaha, U., Bykov, E., Contreras-Puente, G., Bohn, R.G., and Compaan, A.D., Appl. Phys. Lett. 69, 30453047 (1996).Google Scholar
12. Wanlass, M.W., Emery, K.A., Gessert, T.A., Horner, G.S., Osterwald, C.R., and Coutts, T.J., Solar Cells 27, 191 (1989).Google Scholar
13. Fischer, A., Anthony, L. and Compaan, A.D., “Raman Analysis of Short-Range Clustering in Laser-Deposited CdSxTe1-x Films,” Appl. Phys. Lett. 72, 2559, (1998).Google Scholar
14. Bilz, H. and Kress, W., Phonon Dispersion Relations in Insulators, (Springer-Verlag, New York, 1979) p. 112.Google Scholar
15. Compaan, A.D., Matulionis, I, and Nakade, S., “Laser scribing of polycrystalline thin films,” Optics and Lasers in Engineering 34, 1545 (2000).Google Scholar
16. Shao, M., Fischer, A., Grecu, D., Jayamaha, U., Bykov, E., Contreras-Puente, G., Bohn, R.G., and Compaan, A.D., “Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass,” Appl. Phys. Lett. 69, 30453047 (1996).Google Scholar
17. Wendt, R., Fischer, A., Grecu, D. and Compaan, A.D., “Improvement of CdTe solar cell performance with discharge control during film deposition by magnetron sputtering,J. Appl. Phys. 84, 29202925 (1998).Google Scholar
18. Grecu, D. and Compaan, A.D., “Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells,” J. Appl. Phys. 88, 2490–96 (2000).Google Scholar