Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:45:19.764Z Has data issue: false hasContentIssue false

Proton Spin-Relaxation Induced by Localized Spin-Dynamical Coupling in Proteins And in Other Imperfectly Packed Solids

Published online by Cambridge University Press:  21 March 2011

J.-P. Korb
Affiliation:
Laboratoire de Physique de la Matiére Condensée, CNRS UMR 7643, Ecole Polytechnique 91128 Palaiseau, France
A. Van-Quynh
Affiliation:
Chemistry Department, University of Virginia, Charlottesville, VA 22901, U.S.A
R. G. Bryant
Affiliation:
Chemistry Department, University of Virginia, Charlottesville, VA 22901, U.S.A
Get access

Abstract

The magnetic field dependence of 1H spin lattice relaxation rates in noncrystalline macromolecular solids including engineering polymers, proteins, and biological tissues is described by a power law, 1/T1 = Aω0-b, where ω0 is the Larmor frequency, A and b are constants. We show that the magnetic field dependence of the proton 1/T1 may be quantitatively related to structural fluctuations along the backbone that modulate proton-proton dipolar couplings. The parameters A and b are related to the dipolar coupling strength, the energy for the highest vibrational frequency in the polymer backbone, and the fractal dimensionality of the proton spatial distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kimmich, R., Winter, F., Nusser, W., Spohn, K.H., J. Magn. Reson. 68, 263 (1986).Google Scholar
[2] Kimmich, R., Winter, F., Progr. Colloid Polym. Sci. 71, 66 (1985).Google Scholar
[3] Lester, C. C. and Bryant, R.G., Magn. Reson. Med. 21, 117 (1991); ibid. 22, 143 (1991).Google Scholar
[4] Zhou, D. and Bryant, R.G., Magn. Reson. Med. 32, 725 (1994).Google Scholar
[5] Blumberg, W.E., Phys. Rev. 119, 79 (1960)Google Scholar
[6] Abragam, A., The Principles of Magnetic Resonance, Oxford, The Clarendon Press, 1961, (a) Ch IX, p 386; (b) Ch IX, Section IV.C.Google Scholar
[7] Korb, J.-P. and Gouyet, J.-F., Phys. Rev B 38, 493 (1988); J.-P. Korb, M. Whaley, Hodges, Th. Gobron, R.G. Bryant, Phys. Rev. E 60, 3097 (1999).Google Scholar
[8] Bryant, R.G., Schaeffer, J., unpublished.Google Scholar
[9] Nusser, W. and Kimmich, R., J. Phys. Chem. 94, 5637 (1990).Google Scholar
[10] Redfield, A. G., Fite, W., Bleich, H. E., Rev. Sci. Instrum. 39, 710–15 (1968).Google Scholar
[11] Bryant, R.G., Annu. Rev. Biophys. Biomol. Struct. 25, 29 (1996).Google Scholar
[12] (a) Andrew, E.R., Bone, D.N., Bryant, D.J., Cashell, E.M., Gaspar, R., Ming, Q.A., Pure Appl. Chem. 54, 584 (1982); (b) R. Gaspar, E.R. Andrew, D.J. Bryant and E.M. Cashell, Chem. Phys. Lett. 86, 327 (1982).Google Scholar
[13] Englander, S. W., Kallenbach, N.R., Q. Rev. Biophys. 16, 521655 (1984).Google Scholar
[14] Gregory, R. B., Lumry, R., Biopolymers 24, 301326 (1985).Google Scholar
[15] Protein Data Bank (Web site of the Rutgers University).Google Scholar
[16] Stauffer, D., Introduction to percolation theory (Taylor and Francis, London, 1985).Google Scholar
[17] Havlin, S., and Avraham, D. Ben; Adv. Phys. 36, 695 (1987).Google Scholar
[18] Alexander, S. and Orbach, R., J. Phys. Lett 43, L625 (1982).Google Scholar
[19] Courtens, E., Pelous, J., Phalippou, J., Vacher, R., Woignier, Th., Phys. Rev. Lett. 58, 128 (1987); E. Courtens, R. Vacher, J. Pelous, Th. Woignier, Europhys. Lett. 6, 245 (1988).Google Scholar
[20] Alexander, S., Phys. Rev. B 40, 7953 (1989).Google Scholar
[21] Alexander, S., Entin-Wholman, O., Orbach, R., J. Phys. Lett. 46, L549 (1985); ibid., L555 (1985).Google Scholar
[22] Stapleton, H. J., Allen, J.-P., Flynn, C.P., Stinson, D.G., and Kurtz, S. R., Phys. Rev. Lett. 45, 1456 (1980); J.-P. Allen, J.T. Colvin, D.G. Stinson, C.P. Flynn, H.J. Stapleton, Biophys. J. 38, 299 (1982).Google Scholar
[23] Mizyazawa, T., Shimanouchi, T., Mizushima, S., J. Chem. Phys. 29, 611, (1958).Google Scholar
[24] Kachalova, G. S., Morozov, V. N., Morozova, T. Y., Myachin, E. T., Vagin, A. A., Strokopytov, B. V., Nekrasov, Y. V., FEBS Lett. 284, 91(1991).Google Scholar