Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T07:25:15.764Z Has data issue: false hasContentIssue false

Protons Crossing Triple Phase Boundaries based on Pd and Barium Zirconate: A Density Functional Theory Study

Published online by Cambridge University Press:  29 April 2013

Massimo Malagoli
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
Angelo Bongiorno
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
Get access

Abstract

Density functional theory calculations are used to address the energetics of protons crossing “triple phase boundaries” based on Pd and barium zirconate. Our calculations show that the proton transfer reaction at these triple phase boundaries is controlled by the terminal layer of the electrolyte in contact with the metallic catalyst and gas phase. Hydrogen spilling onto the electrolyte surface is energetically favored at peripherical sites of the metal-electrolyte interface, and proton incorporation into the sub-surface region of the electrolyte involves energies of the order of 1 eV. At the triple phase boundary, the energy cost associated with the proton transfer reaction is controlled by both the nature of chemical contact and the Schottky barrier at the metal-electrolyte interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steele, B. C. H., J. Mater. Sci. 36, 1053 (2001).CrossRefGoogle Scholar
Vogler, M., Bieberle-Hütter, A., Gauckler, L., Warnatz, J., and Bessler, W., J. Electrochem. Soc. 156, B633 (2009).CrossRefGoogle Scholar
Goodwin, D. G., Zhu, H., Colclasure, A., and Keeb, R., J. Electrochem. Soc. 156, 1004 (2009).CrossRefGoogle Scholar
Fabbri, E., Pergolesi, D., and Traversa, E., Chem. Soc. Rev. 39, 4355 (2010).CrossRefGoogle Scholar
Lefebvre-Joud, F., Gauthier, G., and Mougin, J., J. Appl. Electrochem. 39, 535 (2009).CrossRefGoogle Scholar
Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., and Goodwin, D. G., J. Electrochem. Soc. 152, A2427 (2005).CrossRefGoogle Scholar
Wilson, J. R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J. M., Miller, D. J., Thornton, K., Voorhees, P. W., Adler, S. B., and Barnett, S. A., Nature Mat. 5, 541 (2006).CrossRefGoogle Scholar
Ruiz-Morales, J., Canales-V’azquez, J., Savaniu, C., Marrero-López, D., Zhou, W., and Irvine, J., Nature 439, 568 (2006).CrossRefGoogle Scholar
Liu, M. L., Lynch, M. E., Blinn, K., Alamgir, F. M., and Choi, Y., Mater. Today 14, 844 (2011).Google Scholar
Shishkin, M. and Ziegler, T., J. Phys. Chem. C 113, 21667 (2009).CrossRefGoogle Scholar
Shishkin, M. and Ziegler, T., J. Phys. Chem. C 112, 19662 (2008).CrossRefGoogle Scholar
Cucinotta, C. S., Bernasconi, M., and Parrinello, M., Phys. Rev. Lett. 107, 206103 (2011).CrossRefGoogle Scholar
Yang, L., Choi, Y., Qin, W., Chen, H., Blinn, K., Liu, M., Liu, P., Bai, J., Tyson, T. A., and Liu, M. L., Nat. Commun. 2, 357 (2011).CrossRefGoogle Scholar
Pergolesi, D., Fabbri, E., D’Epifanio, A., Bartolomeo, E. D., Tebano, A., Sanna, S., Licoccia, S., Balestrino, G., and Traversa, E., Nat. Mater. 9, 846 (2010).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blӧchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Zhang, Y. and Yang, W., Phys. Rev. Lett. 80, 890 (1998).CrossRefGoogle Scholar
de Walle, C. G. V. and Neugebauer, J., Nature (London) 423, 626 (2003).CrossRefGoogle Scholar
Kreuer, K. D., Annu. Rev. Mater. 33, 333 (2003).CrossRefGoogle Scholar
Xu, S., Sood, P., Liu, M., and Bongiorno, A., Appl. Phys. Lett. 99, 181901 (2011).CrossRefGoogle Scholar
Tang, W., Sanville, E., and Henkelman, G., J. Phys.: Compute Mater. 21, 084204 (2009).Google Scholar
Peressi, M., Binggeli, N., and Baldereschi, A., J. Phys. D: Appl. Phys. 31, 1273 (1998).CrossRefGoogle Scholar