Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T01:47:54.305Z Has data issue: false hasContentIssue false

Pulse Processing for Planar Cadmium Telluride Detectors

Published online by Cambridge University Press:  21 February 2011

M. Richter
Affiliation:
Centre de Recherches Nucéaires (IN2P3), Laboratoire PHASE (UPR du CNRS n° 292), B.P.20, F 67037 Strasbourg Cedex, France
M. Hage-Ali
Affiliation:
Centre de Recherches Nucéaires (IN2P3), Laboratoire PHASE (UPR du CNRS n° 292), B.P.20, F 67037 Strasbourg Cedex, France
Z.T. Kuznicki
Affiliation:
Centre de Recherches Nucéaires (IN2P3), Laboratoire PHASE (UPR du CNRS n° 292), B.P.20, F 67037 Strasbourg Cedex, France
P. Siffert
Affiliation:
Centre de Recherches Nucéaires (IN2P3), Laboratoire PHASE (UPR du CNRS n° 292), B.P.20, F 67037 Strasbourg Cedex, France
Get access

Extract

Planar CdTe detectors with different performances for gamma radiation detection have been investigated. The detector internal electric field was analyzed by means of time-of-flight experiments. The correlation of the results with the current-voltage characteristics of the samples, their risetime distribution for different gamma irradiation and, eventually, the shape of detected gamma spectra led us to a detector model based on the theory of space charge limited current.

Using this model, we try to explain operation and failure of trapping loss correction methods for the different detector groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Richter, M., Siffert, P., Nucl. Instr. and Methods A322 (1992), p.559 Google Scholar
[2] Loo, B.W., Goulding, F.S., IEEE Trans.Nucl.Sc. NS–35 1(1988), p.114 Google Scholar
[3] Fairstein, E., IEEE Trans.Nucl.Sc. NS–37, 2(1990), p.382 CrossRefGoogle Scholar
[4] Radeka, V., IEEE Trans.Nucl.Sc. NS–19, 1(1972), p.412 Google Scholar
[5] Goulding, F.S et al. , IEEE Trans.Nuci.Sc. NS–37, 2(1990), p.417 CrossRefGoogle Scholar
[6] Richter, M., Siffert, P., Hage-Aii, M., Mat.Science and Eng. B16 (1993), p.296 Google Scholar
[7] Ottaviani, G. et al. , Revue de Physique Appliquée, Tom 12(1977), p.249 CrossRefGoogle Scholar
[8] Ottaviani, G. et al. , IEEE Trans.Nucl.Sc. NS–22(1975), p.192 Google Scholar
[9] Stuck, R., PhD thesis, ULP Pasteur Strasbourg, 1975 Google Scholar
[10] Kasherinov, e.G. et al. , Sov.ehys.Semicond. 14 7(1980), p.763 Google Scholar
[11] Lampert, M.A., Mark, P., Current Injection in Solids, Academic press INC., New York, 1970 Google Scholar
[12] Akobirova, A.T. et al. , Revue de Physique Appliquée, Tom 12(1977), p.331 Google Scholar
[13] Jones, L.T., Woollam, P.B., Nucl. Instr. and Methods A124 (1974), p.591 Google Scholar
[14] Holzer, A., Nucl. Instr. and Methods A213 (1983), p.83 Google Scholar
[15] Williams, P.H. et al. , Appl.Surf.Science, 41/42 (1989), p.189 Google Scholar