Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T22:57:26.440Z Has data issue: false hasContentIssue false

Quantum rods and dots-based structures & devices: Low cost aqueous synthesis and bandgap engineering for solar hydrogen and solar cells applications

Published online by Cambridge University Press:  11 March 2011

Lionel Vayssieres*
Affiliation:
International Center for Materials NanoArchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044 Japan
Get access

Abstract

If one considers the largest and geographically balanced free natural resource available on Earth, that is seawater, and that more sunlight energy is striking our blue planet in one hour than all of our annual energy consumption, the direct solar-to-hydrogen conversion by photo-oxidation of seawater is a very straightforward and attractive solution for the production of hydrogen, as it is clean, sustainable and renewable. It offers an alternative solution to fossil-fuel-based energy sources and explains the tremendous interest in renewable, sustainable energy sources and materials for energy conversion. However, the materials requirements for water splitting and thus the direct solar-to-hydrogen generation are drastic. The materials must be stable in water, which rules out many classes of materials. They must also be stable under illumination against photocorrosion and their bandgap must be small enough to absorb visible light, but large enough not to “dissolve” once illuminated. Finally, their band edges must be positioned below and above the redox potential of hydrogen and oxygen, respectively. Bandgap energy and band-edge positions, as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edges can be controlled by the electronegativity of the dopants and solution pH, as well as by new concepts such as quantum confinement effects and the fabrication of novel hetero-nanostructures. Fulfilling those requirements while keeping the cost of the materials low is a tremendously difficult challenge, which explains why solar hydrogen generation is still in its infancy. Novel approach and latest development combining low cost aqueous synthesis techniques, vertically oriented metal oxide nanorods and quantum confinement effects probed by x-ray spectroscopies from synchrotron radiation is presented leading to stable and cost-effective visible-light-active semiconductors for seawater splitting, the holy grail of photocatalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. On Solar Hydrogen & Nanotechnology, Vayssieres, L. editor (John Wiley & Sons, 2009)Google Scholar
2. Rosei, F. et al. , Adv. Mater. 20(24), 46274640 (2008)Google Scholar
3. Vayssieres, L., Appl. Phys. A 89(1), 18 (2007)Google Scholar
4. Vayssieres, L., Int. J. Nanotechnol. 4, 750775 (2007)Google Scholar
5. Vayssieres, L., C.R. Chimie 9(5-6), 691701 (2006)Google Scholar
6. Vayssieres, L. and Graetzel, M., Angew. Chem. Int. Ed. 43(28), 36663670 (2004)Google Scholar
7. Vayssieres, L., Int. J. Nanotechnol. 1(1-2), 140 (2004)Google Scholar
8. Vayssieres, L., J. Phys. Chem. B 107(12), 26232625 (2003)Google Scholar
9. Vayssieres, L., J. Nanosci. Nanotech. 1(4), 385388 (2001)Google Scholar
10. Vayssieres, L. et al. , Pure Appl. Chem. 72(1-2), 4752 (2000)Google Scholar
11. Vayssieres, L. et al. , Chem. Mater. 13(2), 233235 (2001)Google Scholar
12. Vayssieres, L. et al. , Nano Lett. 2(12), 13931395 (2002)Google Scholar
13. Vayssieres, L., Adv. Mater. 15(3), 464466 (2003)Google Scholar
14. Vayssieres, L. et al. , Chem. Mater. 13(12), 43954398 (2001)Google Scholar
15. Vayssieres, L. et al. , J. Phys. Chem. B 105(17), 33503352 (2001)Google Scholar
16. Yang, Y. et al. , Physica E 40(4), 859865 (2008)Google Scholar
17. Rabenberg, L. and Vayssieres, L., Microsc. Microanal. 9(2), 402403 (2003)Google Scholar
18. Vayssieres, L., Précipitation en milieu aqueux de nanoparticules d’oxydes: Modélisation de l’interface et Contrôle de la croissance, Thèse de doctorat CHIMIE 1995PA066747, Université Pierre et Marie Curie, Paris, France (1995), pp. 1145 Google Scholar
19. Vayssieres, L., Int. J. Nanotechnol. 2(4), 411439 (2005)Google Scholar
20. Vayssieres, L. et al. , J. Colloid Interface Sci. 205(2), 205212 (1998)Google Scholar
21. Vayssieres, L. et al. , Adv. Mater. 17(19), 23202323 (2005)Google Scholar
22. Persson, C. et al. , Microelectron. J. 37(8), 686689 (2006)Google Scholar
23. Dong, C.L. et al. , Phys. Rev. B 70, 195325 (2004)Google Scholar
24. Henningsson, A. et al. , Adv. Quant. Chem. 47, 2336 (2004)Google Scholar
25. Guo, J.-H. et al. , J. Phys.: Condens. Matter 14(28), 69696974 (2002)Google Scholar
26. Vayssieres, L., “Quantum confined visible-light active nanostructures for direct solar hydrogen generation” in On Solar Hydrogen & Nanotechnology, Vayssieres, L. ed. (John Wiley & Sons, 2009), chapter 17, pp. 523558 Google Scholar
27. Beermann, N. et al. , J. Electrochem. Soc. 147(7), 24562461 (2000)Google Scholar
28. Lindgren, T. et al. , Sol. Energy Mater. Sol. Cells 71(2), 231243 (2002)Google Scholar
29. Lindgren, T. et al. , “Photo-oxidation of water at Hematite electrodes”, in Chemical Physics of Nanostructured Semiconductors, Kokorin, A. I. and Bahnemann, D. W. editors (VSP, Utrecht, The Netherlands, 2003), Chapter 3, pp. 83110 Google Scholar
30. Keis, K. et al. , Nanostruct. Mater. 12(1-4), 487490 (1999)Google Scholar
31. Keis, K. et al. , J. Electrochem. Soc. 148(2), A149155 (2001)Google Scholar
32. Vayssieres, L. and Sun, X.W., Sensor Lett. 6(6), 787791 (2008)Google Scholar
33. Wang, J.X. et al. , Nanotechnology 17(19), 49954998 (2006)Google Scholar
34. Vayssieres, L., Chem. Sensors 20(B), 324325 (2004)Google Scholar
35. Vayssieres, L., “3-D bio-inorganic arrays”, in Chemical Sensors VI: Chemical and Biological Sensors and Analytical Methods, Brukner-lea, C., Vanysek, P., Hunter, G., Egashira, M., Miura, N., and Mizutani, F. editors (The Electrochemical Society, Pennington, NJ, 2004), pp. 322343 Google Scholar
36. Basic research needs for solar energy utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 Google Scholar
37. Duda, L.-C. et al. , J. Electron Spectrosc. Relat. Phenom. 110-111(1-3), 275285 (2000)Google Scholar
38. Vayssieres, L., J. Phys. Chem. C 113(12), 47334736 (2009)Google Scholar