Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T06:32:19.142Z Has data issue: false hasContentIssue false

Quenching and Recovery of the Photoluminescence in Porous Si After Pulse IR Irradiation

Published online by Cambridge University Press:  28 February 2011

J. Diener
Affiliation:
Technische Universität München,Physik-Department E16, D-85747 Garching, Germany
S. Ganichev
Affiliation:
A.F. Ioffe Physicotechnical Institute, Russian Academy of the Sciences, St. Petersburg, 194021, Russia
M. Ben-Chorin
Affiliation:
Technische Universität München,Physik-Department E16, D-85747 Garching, Germany
D. Kovalev
Affiliation:
A.F. Ioffe Physicotechnical Institute, Russian Academy of the Sciences, St. Petersburg, 194021, Russia
V. Petrova-Koch
Affiliation:
Technische Universität München,Physik-Department E16, D-85747 Garching, Germany
F. Koch
Affiliation:
Technische Universität München,Physik-Department E16, D-85747 Garching, Germany
Get access

Abstract

A pulsed, high-power TEA CO2 laser with lines in the region from 9.2 to 10.6 μm has been used to irradiate luminescent porous Si samples. The visible luminescence quenches and then recovers to its initial value on a time scale of one hour. It is found that the quenching is efficient when the IR wavelength is within the Si-O absorption band. We suggest that the resonant excitation of the Si-O bonds results in a metastable reconfiguration of the oxygen together with the creation of dangling bonds. These non-radiative centers are responsible for the PL quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Read, A. J., Needs, R. J., Nash, K. J., Canham, L. T., Calcott, P. D. J., and Qteish, A., Phys Rev Lett 69, 1232 (1992)Google Scholar
2 Koch, F., Petrova-Koch, V., Muschik, T., J. Lumin. 57, 271 (1993)Google Scholar
3 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., and Koch, F., Appl. Phys. Lett. 61, 943 (1992)Google Scholar
4 Meyer, B. K., Petrova-Koch, V., and Muschik, T., Linke, H. and Omling, P., Lehmann, V., Appl. Phys. Lett. 63, 1930 (1993)Google Scholar
5 Ben-Chorin, M. and Kux, A., Schechter, I., Appl. Phys. Lett. 64, 481 (1994)Google Scholar
6 Maruyama, T. and Ohtani, S., Appl. Phys. Lett. 65, 1346 (1994)Google Scholar
7 Diener, J., Ben-Chorin, M., Kovalev, D. I., Ganichev, S. D. and Koch, F. (unpublished)Google Scholar
8 Vial, J. C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., and Macfarlane, R. M., Phys. Rev. B 45, 1417 (1992)Google Scholar
9 Hartmann, E. and Behm, R. J., Krötz, G. and Müller, G., Koch, F., Appl. Phys. Lett. 59, 2163 (1991)Google Scholar
10 Enachescu, M., Hartmann, E., and Koch, F., Appl. Phys. Lett. 64, 2253 (1994)Google Scholar