Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T10:55:50.756Z Has data issue: false hasContentIssue false

Quenching effect of C-H bond in long lived NIR luminescent erbium complexes

Published online by Cambridge University Press:  19 June 2013

Laurent Divay
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Christophe Galindo
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Françoise Soyer
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Evelyne Chastaing
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Renato Bisaro
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Pierre Le Barny
Affiliation:
THALES R&T, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Get access

Abstract

Erbium excited state deactivation is studied for two fluorinated complexes based on N-(P,P-ditetrafluorophosphinoyl-P,P-ditetrafluorophenyl phosphinimidates and N-(P,P-dipentafluoro phosphinoyl)-P,P-dipentafluorophenyl phosphinimidates ligands. We show that the substitution of a fluorine atom in para-position by an hydrogen atom on each phenyl ring of the perfluorinated organic ligand results in a decrease in near infrared luminescence lifetimes from 800 µs to 70 µs when measured under vacuum on sublimated powder samples. These experiments show that the introduction of C-H bonds, although outside the first coordination sphere of the erbium ion, can still induce a one order of magnitude decrease in its excited state lifetime. The found lifetime however is still longer than most reported partially fluorinated complexes, which opens the way for new functionalized complexes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuriki, K., Koike, Y. and Okamoto, Y., Chem. Rev. 102, 2347 (2002)CrossRefGoogle Scholar
Mancino, G., Ferguson, A. J., Beeby, A., Long, N. J., Jones, T. S., J. Am. Chem. Soc., 127, 524 (2005)CrossRefGoogle Scholar
Glover, P. B., Bassett, A. P., Nockemann, P., Kariuki, B. M., Van Deun, R., Pikramenou, Z., Eur. Chem. J. 13, 63086320 (2007) .CrossRefGoogle Scholar
Bassett, A. P., Deun, R. V., Nockemann, P., Glover, P. B., Kariuki, B. M., Van Hecke, K., Van Meervelt, L., Pikramenou, Z., Inorg. Chem. 44, 61406142 (2005).CrossRefGoogle Scholar
Divay, L., Galindo, C., Chastaing, E., Bisaro, R., Wyczisk, F., Le Barny, P., MRS Proceedings, 1342, mrss11-1342-v03-19, DOI:10.1557/opl.2011.1155 Google Scholar
Galindo, C., Divay, L., Soyer, F., Chastaing, E., Bisaro, R. and Le Barny, P... MRS Proceedings, 1471, mrss12-1471-yy04-02 doi:10.1557/opl.2012.1267.Google Scholar
Förster, T., Discuss. Faraday Soc. 27, 7 (1959)CrossRefGoogle Scholar
Quochi, F., Orru, R., Cordella, F., Mura, A., Bongiovanni, G., Artizzu, F., Deplano, P., Mercuri, M.L., Pilia, L. and Serpe, A., J. App. Phys. 99, 053520 (2006)CrossRefGoogle Scholar
Tan, R. H. C., Pearson, J. M., Zheng, Y., Wyatt, P. B. and Gillin, W. P., App. Phys. Lett. 92, 103303 (2008)CrossRefGoogle Scholar