No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
Radionuclides escaping from a repository for high level nuclear waste in crystalline rock may eventually be carried by the flowing water in fissure zones. In such zones the rock is broken in blocks of varying sizes and shapes. Also, the water velocity may vary very much along the flow path. The integrated finite difference method (IFDM) is proposed for numerical calculations of radionuclide transport in such zones. A method for lumping blocks of various sizes and shapes into a single PSEUDOBODY is tested by comparing it with an exact analytical solution which can account for the diffusion into blocks of any size distribution. The errors obtained in using the PSEUDOBODY-approach are found to be small. Furthermore, a method for determining an “average” Peclet number in a strongly varying velocity field is tested and found to give comparatively small errors.